Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции полисахаридов

Таблица 44. Основные реакции полисахаридов Таблица 44. <a href="/info/19126">Основные реакции</a> полисахаридов

    Особенности химических реакций полисахаридов древесины [c.278]

    Реакции полисахаридов древесины имеют очень важное практическое значение в процессах химической и химико-механической переработки древесины - целлюлозно-бумажном, гидролизных, лесохимических производствах, производстве древесных плит и пластиков. Цель целлюлозно-бумажного производства - получение из древесины технической целлюлозы и других волокнистых полуфабрикатов. При этом нецеллюлозные полисахариды в большей или меньшей степени удаляются в результате деструкции в различных процессах варки, протекающих в кислой или щелочной средах, а также под воздействием окислителей. В гидролизных производствах углеводная часть древесины подвергается гидролизу с целью получения из полисахаридов сахаров и продуктов их дальнейшей переработки. В одном из производств лесохимии - пиролизе древесины высокомолекулярные компоненты древесины и в том числе целлюлоза [c.278]

    Специфические иммунологические реакции полисахаридов [c.430]

    Классификация химических реакций полисахаридов древесины как органических соединений [c.282]

    Классификация химических реакций полисахаридов древесины как полимеров [c.279]

    Реакции полисахаридов в кислой среде [c.342]

    Степаненко Б. Н. Цветная реакция полисахаридов с иодом. [Определение иода,крахмала, гликогена и др.] Успехи химии, 1947, [c.308]

    Химические реакции полисахаридов древесины могут протекать как гомогенные или гетерогенные. Для гомогенного протекания реакции полисахарид сначала должен перейти в раствор, например, гомогенный гидролиз полисахаридов в концентрированной серной кислоте. Гомогенные реакции полисахаридов древесины по кинетическим закономерностям практически не отличаются от гомогенных реакций НМС. В большинстве случаев реакции полисахаридов протекают гетерогенно (гетерогенные процессы), т.е. в двух фазах, или начинаются гетерогенно, но заканчиваются гомогенно. [c.281]

    Классификация химических реакций целлюлозы как полимера рассмотрена выше в разделе, посвященном особенностям химических реакций полисахаридов древесины (см. П.3.1). У технической целлюлозы, выделенной из древесины, наибольшее значение из полимераналогичных превращений на практике имеют реакции функциональных групп. К этим реакциям относятся реакции получения сложных и простых эфиров, получения щелочной целлюлозы, а также окисление с превращением спиртовых групп в карбонильные и карбоксильные. Из макромолекулярных реакций наиболее важны реакции деструкции. Реакции сшивания цепей с получением разветвленных привитых сополимеров или сшитых полимеров пока имеют ограниченное применение, главным образом, для улучшения свойств хлопчатобумажных тканей. Реакции концевых групп используются в анализе технических целлюлоз для характеристики их степени деструкции по редуцирующей способности (см. 16.5), а также для предотвращения реакций деполимеризации в щелочной среде. Как и у всех полимеров, у целлюлозы одновременно могут протекать реакции нескольких типов. Так, реакции функциональных групп, как правило, сопровождаются побочными реакциями деструкции. [c.544]


    Мейер указал на зависимость между йодной реакцией полисахарида и его строением чем больше степень ветвления (или чем меньше обратная ей величина — средняя длина цепи), тем более оттенок его окрашивания с иодом сдвигается в красную область. Мейер установил эту зависимость на основных представителях полисахаридов амилозе, амилопектине, гликогене и остаточном р-декстрине. Поскольку к концу 40-х годов XX в. механизм йодной реакции амилозы был рас-дпифрован (как процесс образования комплекса иода с полисахаридной цепью, окружающей его молекулы в виде спирали), было интересно выяснить роль более длинных (сравнительно с внутренними) наруж-лых цепей гликогена в йодной реакции. С этой целью нами фотометрически изучалась йодная реакция исходных гликогенов и продуктов, изолируемых в процессе постепенного р-амилолиза тех же препаратов, на разных стадиях их расщепления [54, 551. Таким образом, сравниваемые препараты имели одинаковое ядро , но наружные ветви гликоге-лов при Р-амилолизе постепенно подрезались . Расщепление гликогена кролика всего на 16,8% приводит в резкому изменению спектра исчезает максимум при 500 А, сдвигаясь в коротковолновую область, одновременно снижается величина поглощения в максимуме кривая поглощения приобретает такой же вид, как и для интактного гликогена лягушки. [c.116]

    Для понимания механизмов химических реакций полисахаридов древесины наибольшее значение имеют системы классификации по двум категориям признаков на основании связывания или удаления структурных элементов по способу разрыва или образования связей. Первый тип реакции (по конечному результату) подразделяется на реакции замешения (8) присоединения (А), имеющего значение у полисахаридов только на промежуточных стадиях элиминирования, или отщепления (Е) перегруппировки. Из этих реакций у полисахаридов наибольшее значение имеют реакции замещения. Кроме перечисленных реакций, в отдельную группу можно выделить окислительно-восстановительные реакции. [c.282]

    Реакции полисахаридов в щелочной среде [c.345]

    Гликозидные связи, соединяющие моносахаридные звенья друг с другом, чувствительны к действию кислот, поэтому обработка полисахаридов кислотами вызывает их деполимеризацию. Основной функциональной группировкой полисахаридов является гидроксильная группа, и превращения этой группы — в первую очередь, получение простых и сложных эфиров и окисление — играют очень большую роль и при установлении строения, и в практическом использовании полисахаридов. Интересно отметить, насколько резко отличаются простые и сложные эфиры полисахаридов от свободных полисахаридов по физическим свойствам. Эти эфиры плохо растворимы в воде, легко растворяются в органических растворителях, причем в производных такого типа отсутствует сильное межмолекулярное взаимодействие, так как нет возможностей для образования водородных связей. Другие функциональные группы, встречающиеся в полисахаридах, также могут участвовать в обычных превращениях. Так, карбоксильные группы уроновых кислот могут быть этерифицированы, восстановлены, аминогруппы аминосахаров — ацилированы и т. д. Конечно, сдойства каждого конкретного полисахарида значительно влияют на выбор экспериментальных условий для всех реакций, т. е. на выбор растворителя, реагентов, времени, температуры реакции и др. Общими особенностями реакций полисахаридов, связанными с их полимерным характером, являются трудность достижения полноты реакции по всем функциональным группам макромолекулы, и трудность проведения избирательных реакций, если только реагирующие группы не отличаются очень сильно по реакционной способности. [c.481]

    Процессы отщепления концевого звена и его стабилизации являются конкурирующими реакциями полисахаридов ГЛ Ц ири щелочных варках,-в которых преобладающую скорость имеет реакция [c.315]

    Важнейшая реакция полисахаридов — это реакция гидролиза, обратная реакции их образования  [c.677]

    Прогресс в изучении свойств полимеров, в особенности их надмолекулярной структуры, привел в ряде случаев к пересмотру некоторых закономерностей гетерогенных реакций. В результате были развиты новые представления о химических реакциях полисахаридов. [c.8]

    Разветвленные полисахариды — амилопектины — дают с иодом иную окраску, чем амилоза. Это объясняется тем, что спирали у них могут образоваться лишь на коротких ( =15—20) внепших ответвлениях. Йодная реакция полисахарида зависит от степени его разветвления. Так, амилоза (без ответвлений) дает чисто синюю окраску с иодом, картофельный амилопектин — фиолетовую, а более разветвленные амилопектины злаков—красную. [c.120]

    К практически важным реакциям полисахарида целлюлозы (СвНюОв) следует отнести получение ее ксантогената и сложных эфиров уксусной и азотной кислот  [c.164]

    Все реакции полисахаридов древесины подразделяют на две группы полимераналогичные превращения и макромолекулярные реакции (см. главу 4). В результате полимераналогичных превращений (реакций мономерных звеньев) изменяется химический состав полисахарида, но не изменяются степень полимеризации и пространственная конфигурация макромолекул. Реакции мономерньпс звеньев, в свою очередь, подразделяют на два вида реакции функциональных групп реакции внутримолекулярных (внутризвенных) превращений. [c.279]


    Использование кислорода или кислородсодержащих соединений при окислительной делигнификации древесины в щелочной среде отражается на протекании основных реакций полисахаридов. В этих условиях реакциям отщепления концевых редуцирующих звеньев и их стабилизации предшествует окисление с образованием С(1)-С(2)-дикарбонильного производного. Это производное затем или вступает в реакцию Р-алкоксиэлими-нирования, приводящую к пилингу, или перефуппировываться с образованием альдоновых кислот, что препятствует пилингу. Стабилизация концевых звеньев в этом случае более эффективна, чем при обычных щелочных варках, и наступает уже после отщепления 10 и даже менее звеньев. Это является причиной более высокого выхода технической целлюлозы при кислородно-щеТГочной делигнификации. [c.351]

    Химические методы определения молекулярных весов полисахаридов, заключающиеся главным образом в определении процентного, содержания восстанавливающих концевых моносахаридов, основаны на реакциях альдегидной группы и дают среднечисловые значения молекулярного веса. Обычными реагентами для количественного определения альдегидных групп служат окислители, такие как гипоиодит натрия, , соли меди , феррицианид калия . Реакции окисления в случае полисахаридов могут протекать нестехиометрически, так что они мало пригодны для вычисления абсолютных значений молекулярных весов, но очень удобны для сравнения по молекулярному весу различных фракций полисахарида . Весьма чувствительным методом анализа концевых восстанавливающих групп является реакция полисахаридов с меченым цианидом натрия в щелочной среде с последующим определением радиоактивности полимера этот метод неприменим, однако, к полисахаридам, разрушающимся щелочами. В тех случаях, когда полисахарид при периодатном окислении не дает формальдегида, его молекулярный вес может быть вычислен по образованию формальдегида после боргидридного восстановления альдегидных групп и последующего периодатного окисле-ния остаток полиола, получающийся из восстанавливающего моносахарида под действием боргидрида, может образовывать при окислении 1 или [c.514]

    Наши знания о реакциях полисахаридов при кислородных способах делигнификации получены благодаря многочисленным экспериментам с низкомолекулярными соединениями [73, 74, 75, 77]. Наиболее важной реакцией, индуцируемой кислородными радикалами, является образование карбонильньй группы у j звена моносахарида, что приводит к расщеплению гликозидной связи пу тем -алкоксиэлиминирования (схема 11.5) [58, 101]. Аналогичным образом инициировать расщепление цепи может окисление в положениях Сд и Се- При одновременном окислении в положениях Сз и Сз образуется структура 2,3-дикетона, которая в щелочной среде может превращаться в звено карбоксифуранозида без расщепления цепи или легко распадаться [72, 78, 79, 84]. [c.243]

    При традиционной сульфитной варке, когда древесина нагревается с сульфитной варочной кислотой, величина pH которой составляет 1,0—2,5, важнейшей химической реакцией полисахаридов ГМЦ является гидролиз гликозидных связей, катализируемый ионами водорода. Интенсивность гидролиза возрастает с повышением температуры варки и концентрации водородных ионов [187, 326—328]. Для примера приводим схему реакции гидролиза 4-0-.метилглюкуроноксилана (схема 9.1). Протон или, вернее, ион гидроксония НзО взаимодействует с ацетальным кислородом, образуя промежуточное неустойчивое соединение (1), которое распадается с разрывом гликозидной связи между С-1 и ацетальным кислородом. Образуется пои карбония (П), который, взаимодействуя с водой, дает концевую группировку (П1), и протон, образующий с водой новый ион гидроксония (IV). Макромолекула, таким образом, расщепляется на два фрагмента, на концах каждого из них присутствует гидроксильная группа. Часть молекулы, где разрыв произошел у С-1, является иолуаце-талью и обладает альдегидными свойствами [735]. Количество карбонильных групи в процессе гидролиза непрерывно увеличивается [745]. Общая скорость ироцесса зависит от устойчивости связи кислорода с С-1 гликозидной связи, устойчивости активного комплекса (I), а также от положения и устойчивости заместителей. [c.281]

    Лорнитцо и Голдман [14] использовали гель-проникающую хроматографию на колонке 28x2,5 см с сефадексом G-25 для очистки растворимого низкомолекулярного (4400) полисахарида, содержащего 60% о-глюкозы, 40% 6-0-метил-о-глюкозы и одну кислотную группу. В качестве подвижной фазы применяли воду. При фильтрации через колонку с дауэксом-50 удалялись небольшие количества веществ, вступающих в биуретовую и нин-гидринную реакцию полисахарид при этом практически не удерживался. [c.131]

    Кауко рассматривал реакции гидратации доменных шлаков с точки зрения термодинамики. Как показал предварительный расчет энтропии, эти шлаки характеризуются значительной свободной энергией гидратации. Процессы растворения, кристаллизации и диффузии при гидратации шлаков можно сравнить с медленно протекающими реакциями полисахаридов Стекловидная природа шлаков, согласно Кауко, прежде всего указывает на отсутствие внутреннего равно(весия. Первая реакция шлака с водой представляет собой ионный обмен между Н + и подвижными катионами, помимо которого также происходит адсорбция щелочей. Последующие реакции превращают шлак в необратимые продукты, причем образуются хлопья кремневых гелей, а реакция гидроокиси кальция с кремнеземом приводит к усадке и твердению. [c.832]


Смотреть страницы где упоминается термин Реакции полисахаридов: [c.155]    [c.341]    [c.18]    [c.518]    [c.216]    [c.238]    [c.712]    [c.618]    [c.320]    [c.23]    [c.499]    [c.274]   
Смотреть главы в:

Переработка сульфатного и сульфитного щелоков -> Реакции полисахаридов

Древесина -> Реакции полисахаридов

Древесина -> Реакции полисахаридов




ПОИСК





Смотрите так же термины и статьи:

Полисахариды



© 2024 chem21.info Реклама на сайте