Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы диаграмм состояния для систем полимер — растворитель

    Однако, несмотря на очень хорошее экспериментальное подтверждение основного типа диаграммы состояния для системы жесткоцепной полимер — растворитель, можно отметить и некоторые расхождения, которые стали предметом более детальных термодинамических исследований Миллера и сотр. [c.83]

    С позиций статистической термодинамики растворов диаграммы состояния в области составов, соответствующих однофазному состоянию растворов, могут быть дополнены линиями, ограничивающими области существования различных ассоциативных структур гетерофазных флуктуаций, кластеризации молекул, заполнения активных центров макромолекул. Эти области наблюдаются и экспериментально регистрируются в различных системах полимер —растворитель и не являются специфическими для систем полимер—вода (рис. 6.3). По сути дела, именно эти зоны диаграмм фазового состояния и исследуются экспериментально, а получаемая при этом информация используется для характеристики состояния и парциальной подвижности молекул низкомолекулярного компонента в растворах, а следовательно, и для установления механизма взаимодействия компонентов. Следует иметь в виду, что вблизи бинодальной кривой в области по определению Я. И. Френкеля развитых гетерофазных флуктуаций [185], одновременно сосуществуют и кластеры, и локализованные, и свободные молекулы диффузанта, в частности воды. По мере уменьшения p/ps (бинодаль в бинарной системе соответствует p/ps=l), т. е. движения фигуративной точки в область малых концентраций низкомолекулярного компонента, происходит последовательное вырождение указанных выше типов ассоциативных структур. Заметим, что для некоторых систем удается выделить на диаграмме фазового состояния область концентраций, в пределах которой увели- [c.217]


    Чтобы представить себе фазовое состояние этих двух типов полимерных студней, следует обратиться к фазовым диаграммам, которые позволяют более наглядно передать различные температурно-концентрационные переходы в этих системах. С точки зрения фазового равновесия системы сшитый полимер — растворитель и несшитый полимер — растворитель различаются между собой тем, что повышение температуры (для систем с нижней критической температурой — понижение температуры) приводит для систем второго типа к разрушению (плавлению) студня вследствие достижения критической точки совместимости полимера и растворителя, [c.25]

    Значительную склонность к образованию неравновесных систем с развитым переходным слоем имеют системы, получаемые в виде пленок из раствора. В этом случае, формирующаяся всей совокупностью процессов взаимодействия полимера и растворителя, физическая структура образцов, наряду с химическим строением цепей второго полимера, может оказывать влияние на скорость деструктивных превращений полимеров даже после полного удаления растворителя. Предыстория формирования полимерной композиции (химическая природа и термодинамическое качество растворителя в отношении каждого из полимеров, исходная концентрация раствора, соотношение компонентов, тип фазовой диаграммы) сказывается на ряде характеристик полимерной смеси -способности компонентов к взаиморастворимости, изменению конформационного состояния макромолекул каждого полимера, релаксационных свойствах образца. Все это в результате отражается на кинетике химических превращений полимеров. В пользу этого свидетельствуют данные по деструкции пленочных образцов ПВХ в смеси с СКН-18, полученных из совместного раствора в ДХ. Как видно из рис. 3, с ростом концентрации исходного раствора смеси полимеров наблюдается закономерное увеличение скорости деструкции ПВХ. Обращает на себя внимание факт, что при одном и том же содержании нитрильного каучука в смеси скорость дегидрохлорирования ПВХ в пленках, полученных из 1% и 5% растворов, различается в 2 раза. Аналогичным образом ведут себя и смеси ПВХ с СКН-26 и СКН-40, полученные в виде пленок. Изотермический отжиг пленок из смесей полимеров при температуре, превышающей ПВХ, приводит к значительному уменьшению значений скоростей дегидрохлорирования ПВХ в смеси, однако даже после длительного отжига сохраняется различие в значениях [c.251]


    Характер диаграмм состояния системы полимер — растворитель зависит от химического строения и соотношения полярностей смешиваемых компонентов. На рис. 28 представлена типичная диаграмма состояния растворов аморфных полимеров в растворителях разных типов. Такие системы характеризуются наличием как верхней (ВКТР), так и нижней (НКТР) критической температуры растворения. Площадь вне кривых представляет собой область неограниченного смешения двух компонентов, а площадь, ограниченная кривыми, — те концентрации и температуры, при которых происходит расслаивание раствора. [c.80]

    В большинстве случаев состояние системы полимер— растворитель в широкой области концентраций м. б. выражено фазовой диаграммой. В нек-рых системах, особенно в растворителях типа диметилформамида, крезола, хлороформа, конформация макромолекул остается а-спиральной по всей области концентраций, несмотря на различие в межмолекулярной организации. Минимальная длина П., необходимая для образования а-спирали в р-ре, составляет 10—20 аминокислотных остатков. Нек-рые П. не образуют а-спиралей из-за пространственных препятствий, создаваемых боковыми группами (валин, изолейцин), или вследствие образования прочных водородных связей между боковыми группами (серии, треонин, их 0-ацетильные производные). В ряде систем в зависимости от концентрации наблюдается либо а-спираль, либо р-форма, причем переход ар обратим без каких-либо промежуточных состояний, как это имеет место в случае р-ров полиэлектролитов. Такой же переход упорядоченных фаз неио-низирующихся П. в конформацию статистич. клубка м. б. вызван добавлением растворителей, разрушающих спираль, напр, трифторуксусной или дихлоруксусной к-ты. Относительные стабильности спиральных конформаций различных П. изучают путем титрования их р-ров трифторуксусной к-той. Спирали оптически активных П. значительно устойчивее спиралей соответ-ствуюпщх рацемич. полимеров. Ионизация боковых групп полилизина и др. полиэлектролитов вызывает разрушение а-спиралей вследствие электростатич. отталкивания боковых групп. Так, полиглутаминовая к-та при pH 5 имеет форму спирали, а в щелочных р-рах — конформацию статистич. клубка. Для солей этих полиаминокислот в твердом состоянии наблюдается конформационный переход ар при изменении [c.14]

Рис. 4.11. Различные типы диаграмм состояния системы аморфный полимер — растворитель (Гк и пл температуры кипения и плавления растворителя ВКТС и НКТС — верхняя и нижняя критические температуры смешения). Рис. 4.11. Различные <a href="/info/1828202">типы диаграмм состояния системы</a> <a href="/info/22233">аморфный полимер</a> — растворитель (Гк и пл <a href="/info/6377">температуры кипения</a> и <a href="/info/49575">плавления растворителя</a> ВКТС и НКТС — верхняя и <a href="/info/128992">нижняя критические температуры</a> смешения).
    Вернемся теперь к рис. 10 и посмотрим, какие непосредственные сведения о структуре системы полимер—растворитель можно почерпнуть из анализа этой фазовой диаграммы. Прежде всего будем подниматься от более низких к более высоким температурам вдоль оси ага = 1. Если полимер аморфный, он последовательно проходит через все три релаксационных ( физических состояния стеклообразное, высокоэластическое и вязкотекучее. Они представляют собой разновидности жидкого фазового состояния с раз ][ичной степенью, замороженности сегментальной подвижности цепей. Все это хорошо известные вещи, но о них иногда забывают при рассмотрении фазовых равновесий. В сущности, для системы аморфный полимер—растворитель всегда реализуется фазовое равновесие типа жидкость—жидкость (ибо, говоря о равновесии, мы должны принимать во внимание именно фазовое, а не релаксационное состояние той или иной двухкомпонентной фазы. При достаточно высокой температуре, но ниже ВКТС, раствор вероятнее всего распадается на два обычных раствора различной концентрации. Нередко, используя такое разделение на две жидкие фазы для фракционирования (практически в этом случае чаще варьируется растворитель, но вскоре мы убедимся, что в принципе это ничего не меняет), говорят об образовании коацервата — из-за внешней аналогии с коацервацией в амфифильных электролитных системах. [c.103]

    Выше был рассмотрен наиболее часто встречающийся тип диаграммы состояния для системы аморфный полимер — растворитель с верхней критической температурой Но существуют системы, у которых наблюдается нижняя критическая температура смешения, т. е. совместимость увеличивается не с повышением, а с понижением температуры. Поскольку такие системы имеют практическое значение и примером их служат водные растворы целлюлозы и ее низкозамещенных эфиров (в частности, ксантогенат целлюлозы), требуется подробнее остановиться на этом вопросе. [c.78]

    Наконец, растворы ПВС могут образовывать студни второго типа с матрицей из высококонцентрированной полимерной фазы в результате перехода раствора в область распада на аморфные фазы. Условием образования студней такогр типа является перевод системы в область, лежащую на диаграмме состояния под бинодальной кривой. Подвержены ли водные растворы ПВС такому распаду или область расслоения лежит далеко от области равновесия кристаллический полимер — растворитель, т. е. не совершается ли во всех случаях первоначально образование кристаллической фазы, проходящее до выделения полимера в виде высококонцентрированного раствора  [c.181]


    Имеются две основные модели, с помощью которых можно вывести уравнения, предсказывающие влияние как температурного градиента, так и градиента концентрации растворителя на эффективность фракционирования. Первая из этих моделей предложена Капланом [22]. Каплан приводит экспериментальные факты, свидетельствующие о том, что фазовая диаграмма для раствора аморфного полимера представляет собой асимметричную кривую смешения с критической точкой, весьма близко расположенной к ординате растворителя. Поэтому Каплан постулирует, что описывающая состояние разбавленного раствора полимера при охлаждении точка пересекает кривую смешения и в осадок выпадает очень вязкая или гелеобразная фаза, находящаяся в равновесии с гораздо большим объемом практически чистого растворителя. Эта модель предполагает, что разбавленный раствор подобного типа присутствует в любой содержащей полимер зоне колонки. Как следует из расчетов Бейкера и Вильямса, гель будет выпадать в осадок при температуре, соответствующей 0-температуре Флори [37], т. е. темиературе, при которой, согласно Флори, происходит разделение фаз в системе растворитель — полимер бесконечного молекулярного веса. Обогащение смеси лучшим растворителем приведет к растворению геля и последующему выделению его в осадок, но уже при меньшей темнед)атуре. Объем элюирующей жидкости, протекающей через колонку в любой момент времени, считается малым по сравнению с объемом, взятым для создания полного градиента концентрации растворителя. Следовательно, различием между составами растворителя в верхней и нижней частях колонки можно пренебречь, Исходя из этого, Каплан получил уравнение [c.101]


Смотреть страницы где упоминается термин Типы диаграмм состояния для систем полимер — растворитель: [c.14]    [c.87]    [c.241]    [c.241]   
Смотреть главы в:

Физико-химические основы переработки растворов полимеров -> Типы диаграмм состояния для систем полимер — растворитель




ПОИСК





Смотрите так же термины и статьи:

Диаграмма состояния системы полимер растворитель

Диаграммы полимер два растворителя

Диаграммы системы

Диаграммы состояния

Полимер растворители

Полимер три состояния

Системы состояние

Состояние растворителя

Типы полимеров



© 2025 chem21.info Реклама на сайте