Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные характеристики дисперсной фазы

    Основные количественные характеристики системы при наличии потоков двух фаз перепад давления, результирующая скорость сплошной фазы и удерживающая способность по дисперсной фазе. Для получения количественных характеристик двухфазного потока можно использовать два принципа [14, 151. [c.138]

    В колонных аппаратах химической технологии объемная доля дисперсной фазы может изменяться в очень щироких пределах - от нуля до максимально возможной, а скорости движения фаз относительно стенок аппарата имеют, как правило, тот же порядок величины, что и скорость движения частиц относительно жидкости. Поэтому взаимодействие фаз, связанное с их относительным движением, и гидродинамическое взаимодействие частиц между собой оказывают решающее воздействие на характер течения в аппарате. Для математического описания течений такого рода наибольшее распространение в последнее время получила модель раздельного движения фаз, или двухжидкостная модель [92—95]. В ней фазы рассматриваются как два взаимопроникающих и взаимодействующих континуума, заполняющих один и тот же объем [92, 95]. Фазы, составляющие дисперсную смесь, как бы размазываются по объему, занятому смесью, но при этом каждая из них занимает лишь часть этого объема Величина носит название объемной доли (или объемной концентрации) г-й фазы и является одной из основных характеристик дисперсного двухфазного потока. Объемная доля дисперсной фазы д = может называться удерживающей способностью, задержкой, газосодержанием, а объемная доля сплошной фазы ( = 6 -удерживающей способностью по сплошной фазе либо порозностью. Для двухфазного течения всегда <р + = . Приведенная плотность фазы определяется следующим образом  [c.58]


    Под дисперсностью эмульсии понимают степень раздробленности дисперсной фазы в дисперсионной среде. Для эмульсий, так же как и для других дисперсных систем (коллоидных растворов и суспензий), дисперсность является основной характеристикой, определяющей их свойства. Дисперсность эмульсии измеряется величиной диаметра эмульгированных частиц d, либо обратной ей величиной D = l/d, называемой обычно дисперсностью, или выражается удельной межфазной поверхностью, приходящейся на единицу объема дисперсной фазы. [c.24]

    Общая характеристика газовых эмульсий Основные характеристики дисперсной фазы [c.42]

    Как уже отмечалось, основная характеристика дисперсных систем — размер частиц дисперсной фазы. Именно.от этой величины зависит поведение системы во времени, ее реакция на воздействие тех или иных внешних сил и т. д. Короче говоря, физико-химические и биологические свойства дисперсных систем при прочих равных условиях существенно зависят от их дисперсности [193]. [c.9]

    Объемная доля фазы в дисперсном потоке является одной из основных характеристик дисперсного потока. В нефтехимии, нефтедобыче и других отраслях объемную долю дисперсной фазы,, в потоке называют по-разному  [c.111]

    Именно это соотношение использовано в предыдущей формуле, что позволило вообще исключить из нее величину дипольного момента, оставив вместо него основную магнитную характеристику дисперсной фазы М, — ее намагниченность насыщения. Примечательно, что, согласно гипотезе H.A. Толстого, величина постоянного электрического дипольного момента частицы в полярной среде пропорциональна ее поверхности, а не объему, так что влияние размера частиц на эффекты электрической и магнитной поляризаций существенно различается. Вычисление индуцированного электриче- [c.683]

    Нахождению зависимости критического радиуса капли при дроблении от различных характеристик сплошной и дисперсной фаз посвящено большое число работ. Приведем основные из полученных в них результатов. [c.77]

    Одной из основных характеристик дисперсных систем является объемная доля дисперсной фазы ф, представляющая собой [c.120]

    Одной из основных причин торможения миграции границ является наличие твердых, жидких или газовых включений в материале. Их тормозящее влияние обусловлено тем обстоятельством, что отрыв границы от включения ведет к увеличению ее площади с соответствующим повышением энергии. Зингер впервые предложил соотношение, связывающее тормозящую силу Рт с характеристиками дисперсной фазы [c.235]


    Рассмотрены факторы, определяющие опасность полимерных материалов при пожаре. Дан анализ современного состояния теории горения таких материалов. Изложен экспериментальный метод их комплексной оценки, учитывающий кинетику процессов разложения и горения, суммарную токсичность основных продуктов, количественную характеристику дисперсной фазы дыма. [c.2]

    В процессе изменения гидродинамической структуры потоков в масштабе аппарата изменяются и ее основные количественные характеристики распределение частиц сплошной и дисперсной фаз по траекториям, по времени пребывания в аппарате, удерживающие способности аппарата по сплошной и дисперсной фазам, распределение включений дисперсной фазы по размерам и т. п. [c.44]

    Изложенные рассуждения приводят к конструкции так называемой сферической ячеечной модели со свободной поверхностью экстремальных условий. Приведем основные количественные характеристики этой модели в применении к проточной полидисперсной системе. Пусть V — суммарный объем системы, — объем сплошной фазы, —объем дисперсной фазы, т. е. У=У1- -У2 , ( 2 — объемный расход дисперсной фазы 1ц — среднее время пребывания дисперсной фазы в аппарате. Можно записать Число элементов дисперсной фазы в аппарате определится выражением [c.140]

    Явления четвертого уровня иерархии определяют гидродинамическую обстановку в локальном объеме аппарата. Под локальным объемом понимается объем, который мал по отношению ко всему объему аппарата, но его размеры таковы, что в нем содержится достаточно много кристаллов дисперсной фазы. Основными количественными характеристиками данного уровня иерархии являются нормальные и касательные напряжения, значения деформаций и скоростей деформации, коэффициенты вязкости, диффузии, теплопроводности, скорость собственно кристаллизации и т. д. [c.10]

    Стабильность является одним из основных свойств эмульсий, однако недостаточным для полной характеристики, так как необходимо знать геометрические и концентрационные параметры системы, т. е. размер капель и концентрацию их. Эти параметры зависят от метода получения и физических свойств гетерогенной системы (поверхностного натяжения, вязкости, плотности фаз и т. д.). Результаты дисперсного анализа и соотношение объемов непрерывной и дисперсной фаз наиболее полно характеризуют эти параметры. Зная объем дисперсной фазы Уф и общее число капель эмульсии п легко получить средний объем капли, входящий в уравнение (2)  [c.421]

    В различных условиях существования углеводородные системы, нефти, газовые конденсаты и продукты их переработки могут рассматриваться в виде многокомпонентных нефтяных дисперсных систем. Изменение термобарических условий приводит к превращениям инфраструктуры указанных систем, которые наиболее выражены в области фазовых переходов. При этом важнейшими параметрами, которые характеризуют систему на микроуровне, являются дисперсность, энергия межмолекулярных взаимодействий, размеры, конфигурация, поверхностная и объемная активность структурных образований, представляющих дисперсную фазу, степень их сольвати-рования компонентами дисперсионной среды. Изменение указанных параметров отражается на основных макрохарактеристиках системы, например плотности, вязкости, упругости пара, агрегативной и кинетической устойчивости. Причем, как правило, при отклике на внешние или внутренние возмущения на нефтяную дисперсную систему изменение этих характеристик сопровождается нелинейными и неаддитивными эффектами. Отклонения от аддитивности различных свойств нефтяных дисперсных систем в процессе их превращений характерны не только для смесей различных углеводородов, но могут проявляться даже в пределах одного гомологического ряда. [c.302]

Рис. 108. Зависимость основных структурномеханических характеристик водных дисперсий глин и глинистых минералов от концентрации дисперсной фазы. Обозначения те же, что и на рис. 106. Заштрихована область необходимых значений для устойчивого состояния водных дисперсий. Рис. 108. <a href="/info/26826">Зависимость основных</a> структурномеханических <a href="/info/1434117">характеристик водных</a> <a href="/info/312024">дисперсий глин</a> и глинистых минералов от <a href="/info/72568">концентрации дисперсной фазы</a>. Обозначения те же, что и на рис. 106. Заштрихована область необходимых значений для <a href="/info/12722">устойчивого состояния</a> водных дисперсий.
    Основные характеристики. Дисперсионную среду характеризуют хим. составом, т-рой, давлением, степенью ионизации, параметрами внеш. физ. полей, полем скоростей течения, наличием турбулентности и ее параметрами, наличием и величиной градиентов т-ры и концентрации компонентов. Важнейшие параметры дисперсной фазы А.-объемная доля частиц ср и их массовая доля ф , число частиц в единице объема (счетная концентрация) Пр, средний размер частицы йр и ее электрич. заряд. Параметры дисперсной фазы атм. А. 1ШИ нормальных т-ре и давлении составляют 5-10 -10- см, Ир 1-10 м ф 10- -10" , 10" В верх, слоях атмосферы = 10 -10 см" 10" -10" Наряду с усредненными величинами дисперсную фазу характеризуют распределением частиц по размерам и по величине электрич. заряда (последнее даже для моно-дисперсных А.). Если в-во дисперсной фазы радиоактивно, необходимо знать также уд. активность частиц. [c.235]


    Основной характеристикой рассматриваемого процесса разделения суспензий и газовзвесей является скорость осажде-н и я, т. е. скорость относительного движения твердых частиц. При определении этой скорости необходимо различать свободное и стесненное осаждение. Свободное осаждение, наблюдающееся в разбавленных суспензиях и газовзвесях (объемная концентрация твердой фазы < 5%), характеризуется отсутствием взаимного влияния частиц дисперсной фазы, т. е. каждая из них ведет себя как одиночная частица в окружающей сплошной среде. С ростом йо благодаря взаимному влиянию пограничных слоев и столкновениям соседних твердых частиц осаждение становится стесненным, сопротивление частиц потоку возрастает и скорость их движения падает. [c.200]

    В воздухе можно обнаружить великое множество частиц (аэрозолей) как естественного, так и искусственного происхождения эти частицы могут быть как твердыми, так и жидкими (аэрозоли с твердой и жидкой дисперсной фазой) и иметь самые различные размеры. На рис. 3.17 приведены основные характеристики частиц, которые могут находиться в воздухе. [c.226]

    Основные закономерности различных режимов движения фаз в идеальных дисперсных потоках были установлены в серии работ Лапидуса и Элджина с сотрудниками [146—151]. Результаты этих исследований получили теоретическое обоснование в работах Уоллиса [94] и Зубера [140] в рамках феноменологической континуальной модели раздельного движения фаз. Для нахождения гидродинамических характеристик движения фаз в различных режимах Уоллис [94] использовал разработанную им модель потока дрейфа. По нашему мнению, подход, основанный на анализе равновесных. состояний моделирующей поток динамической системы, является более общим и наглядным. Элементы такого подхода впервые были использованы в работе [152]. [c.87]

    Согласно определению понятие раствора охватывает любые агрегатные состояния системы —жидкие,—газообразные и твер-дые. Примерами растворов являются нефть и нефтепродукты, естественный нефтяной газ и воздух, жидкие и твердые сплавы металлов и расплавленные смеси силикатов. Основной характеристикой раствора является совершенно равномерное распределение составляющих его вешеств друг в друге. В этом смысле необходимо отличать растворы от химических соединений и простых смесей. Химические соединения состоят из молекул одного лишь вида и с точки зрения правила фаз являются однокомпонентными системами, не подходящими под определение понятия раствора. В растворе же число составляющих веществ может быть любым, ибо молекулы их в растворе сохраняются химически неизменными. От простых смесей растворы отличаются совершенно равномерным распределением молекул компонентов по всему объему фазы, тогда как жидкие смеси, называемые суспензиями, эмульсиями или коллоидными растворами, являются системами из двух или большего числа фаз, перемешанных с различной степенью дисперсности. [c.67]

    Характеристиками дисперсных или барботажных систем газ — жидкость в массообменных аппаратах являются удельная поверхность контакта фаз, задержка жидкости, объемное газосодержание, относительная плотность и высота дисперсной системы и средний диаметр пузыря или капель. Из перечисленных характеристик первые две — основные, определяющие массопередачу и гидродинамику двухфазных течений. [c.157]

    В качестве характеристики профиля использовалось отношение тепловых потоков фаз 5) [см. уравнения (2.93)]. Значения характеристики профиля 1 изменялись в пределах 0,231—2,429. В зависимости от значения 5] кривые рис. 2.35 условно можно подразделить на три группы 5 < 1 1 51 > 1. Для режимов работы с 5 1 характерно линейное уменьшение температуры в центральной части колонны, и профили с одинаковыми значениями 5) в этой части колонны параллельны. С увеличением расхода сплошной фазы, а значит, и с уменьшением 51 скачок температуры сплошной фазы вверху колонны уменьшается, причем для режимов работы с с I в основном теплообмен происходит в центральной и нижней частях колонны, С увеличением расхода дисперсной фазы, то есть с увеличением значений 5], скачок температуры сплошной фазы на входе в колонну увеличивается, и для 5] > 1 он достигает 50 % и более. Объясняется это увеличением содержания дисперсной фазы в колонне, что приводит к возрастанию захвата сплошной фазы каплями дисперсной, а также к появлению циркуляционных токов жидкостей в верхней и нижней частях аппарата. Всего был замерено около 300 профилей температуры. [c.131]

    Законы рассеяния света для полидисперсных систем определяются не абсолютными размерами частиц, а соотношением (пропорцией) частиц различных размеров в дисперсной системе, т. е. усредненными значениями размеров частиц. Функция распределения частиц по размерам f (о) является важнейшей характеристикой среды и представляет собой сложную функцию, зависящую в основном от трех параметров размера частиц р,-, разницы в размерах частиц дисперсной фазй Лр/ и асимметрии распределения частиц Д. Следовательно, и интенсивность света, рассеянного полидисперсной системой частиц, является функцией этих же параметров. [c.31]

    Следует остановиться еще на одной, весьма важной особенности каталитического гидрооблагораживання остатков - это агрегативная устойчивость сырья. Как уже отмечалось в гл. 1, при переработке сырья, характеризующегося низкой агрегативной устойчивостью, возможно вьшадение дисперсной фазы в слое катализатора, что ведет к загрязнению его и ухудшению эксплуатационных характеристик катализатора. Загрязнения в основном состоят из карбенов и карбоидов, конечных продуктов термических превращений смол и асфальтенов. Интенсивность превращения асфальтенов в карбоиды определяется не только химическими стадиями, но и степенью диспергирования асфальтенов в разбавителе - дисперсионной среде [101]. С увеличением диспергирующих свойств дисперсионной среды, что наблюдается при увеличении М и содержания аренов, затрудняется ассоциация частиц асфальтенов [c.114]

    Исследование образования статических зарядов при распылении порошков показало, что степень асимметрии их заряда зависит от соотнощения числа частиц, соприкасающихся со стенкой сосуда, и частиц, соприкасающихся только одна с другой. Величина заряда при прочих равных условиях зависит от скорости движения аэрозоля, концентрации пыли и ее дисперсности. Последние два фактора являются основными характеристиками аэрозоля как дисперсной системы, так как многие ее свойства связаны с высокоразвитой поверхностью дисперсной фазы. [c.15]

    Авторами работы [6] представлены результаты теоретических и экспериментальных исследований по воздействию электрического и магнитного полей, а также их совместному воздействию на поведение диспергированных в электролите частиц. Основные характеристики дисперсной фазы — параметры ДЭС. На основании приближенной модели ДЭС авторы устанавливают основные закономерности взаимодействия прилегающих к поверхности частиц слоев дисперсионной среды с внещним электромагнитным полем. Результат взаимодействия — изменение характера процесса массопереноса, что дает возможность управления поведением частиц при наложении внешнего электромагнитного поля. Практически это означает возможность сепарации частиц по отдельным их признакам (размер, С, проводимость), а также полного разделения фаз. Последний аспект представляет наибольший интерес для очистки сточных вод от нерастворимых примесей. [c.180]

    Д. — основная характеристика дисперсных систем ее размерность в системе S см см = см . Для грубодиспе 1Сных систем б зЮО мк (10 см) и Д., т. е. Si < 600 см для тонкодисперсных систем 100 мк > 6 > 1 и лежит мешду 600 и 6 10 см , а для коллоидных, т. е. предельно высокодисперсных систем (б между 1 м/с и 10 мк), Д. находится мешду 6 10 и 6 10 см 1. Уд. поверхность часто выражается поверхностью единицы массы т дисперсной фазы (дисперсного тела) в см /г si = s /p, где р = mh — плотность тела. Наибольшая Д. коллоидных фаз, напр, в наиболее высокодисперсных золях с размерами частиц порядка 4 мльк (10 см ), по порядку величины составляет = 10 10 слг , что соответствует внутренней уд. поверхности наиболее высокопористых тел, таких активных адсорбентов, как активированные угли, силикагели, у к-рых sj достигает 10 м г. [c.575]

    Основные характеристики дисперсных систем — их агрегативная и седиментационная устойчивость — по существу, определяются достижением и поддержанием во времени концентрационной однородности (равновероятности) распределения дисперсной фазы в объеме дисперсионной среды. Отсюда следует один из важнейших в физикохимии ВКДС вывод ввиду того, что управление структурно-механическими свойствами ВКДС нельзя обеспечить только физико-химическими методами и разрушение структуры не может быть достигнуто за счет теплового движения, с помощью внешних механических воздействий в структурированной дисперсной системе необходимо создать такое динамическое состояние, при котором все обратимые по прочности контакты между частицами дисперсной фазы будут разрушены и реализуется наибольшая текучесть при наименьшей эффективной вязкости (см. гл. II). [c.97]

    Обьино химическая реакция протекает в объеме одной из фаз, сопротивление которой является лимитирующим. Ниже будут рассмотрены случаи реакхщй первого и второго порядков, протекаюпшхв объеме сплошной или дисперсной фазы. Тепловой эффект химической реакции полагается незначительным, так что основные физико-химические характеристики среды (вязкость, плотность, коэффициент диффузии и др.) остаются постоянными. [c.264]

    Дишерсностъ является основной характеристикой эмульсий, так же как и других дисперсных систем (коллоидных растворов, суспензий). Дисперсность эмульсий измеряется диаметром с1 эмульгированных частиц жидкости, имеющих шарообразную форму, либо обратной ей величиной 0= 1/ , или выражается удельной межфазной поверхностью. Удельная межфазная поверхность всякой дисперсной системы равна общей поверхности между фазами 8, деленной на объем дисперсной фазы V.  [c.19]

    Нефть является диэлектриком, проводимость которого в зависимости от индивидуальных свойств и примесей изменяется в пределах Ю"" —10 (Ом-м) [5]. Диэлектрическая проницаемость (ДП) нефти — более стабильная характеристика. Она изменяется в пределах 1,9—2,8. Электрическая проводимость и ДП эмульсий существенно зависят о концентрации дисперсной фазы и являются функциями частоты и напряженности внешнего электрического поля. Эти две основные электрические характеристики эмульсий довольно подробно изучались теоретически и экспериментально. Обзор общих результатов, полученных при их исследовании, можно найти в работе Ханаи [2], а результатов конкретных исследований водонефтяных эмульсий— в работах [21—26]. [c.15]

    В главе 2.2 были рассмотрены принципы модификации водной фазы и отмечено, что при одновременной модификации дисперсионном среды и дисперсной фазы битумных эмульсий были получены превосходные результаты по улучшению практически всех эксплуатационных характеристик как самих эмульсий, так и остатка их распада. Кроме того, модификация парными полимерами, при которой достигается синергетический эффект, позволяет получать очень устойчивые битумные эмульсии, которые без заметного ухудшения основных свойств можно хранить до 1 года и более. Это связано с явлением стерической стабилизации, которое подробно рассмотрено в [39]. В этой работе изложены основы для решения задачи регулирования устойчивостиколлоидных дисперсий, дается анализ стабилизации различных дисперсных систем полимерами. Ниже рассматривается механизм стабилизации коллоидных систем присоединенными макромолекулами. [c.73]

    Гетерогенные выбросы невозможно даже приблюкенно рассматривать как равновесные системы. Поэтому свойства газовой среды (дисперсионной фазы) и взвешенных частиц (дисперсной фазы) рассматривают раздельно. Для описания характеристик газовой фазы в основном применяется рассмотренное выше приближение смеси идеальных газов, а для дисперсной части - нормальное распределение случайных величин. [c.24]

    В последние годы достигнут значительный прогресс в изучении структуры и свойств смазок. Широкие электронномикроскопическне исследования структуры смазок позволили дать обобщенную морфологическую характеристику всех основных типов смазок [1]. Было найдено, что дисперсная фаза подавляющего большинства мыльных смазок образована анизодиаметричными частицами мыла (игольчатыми, лентовидными, пластинчатыми) с отношением длины к поперечным размерам от 10 1 до 200 1. Размеры частиц могут изменяться иа 5—6 десятичных порядков — от десятков ангстрем до сотен микрон. Форма и размеры частиц зависят от состава комнонентов, в особенности мыла, и термического и механического режимов изготовления системы. [c.147]

    Б. Я- Ямпольоким с сотрудниками [106—111] были изучены процессы структурообразования на системах, моделирующих наполненные резиновые смеси—концентрированных дисперсиях сажи (как основного активного наполнителя),— в неполярной углеводородной среде. Применялись методы измерения электропроводности и снятия вольт-амперных кривых в широком интервале градиента потенциала, определения структурно-механических (тиксотропных) характеристик дисперсий, измерения объема осадков и микрофотографии. Изучено влияние температуры, концентрации дисперсной фазы, введения каучуков различных типов и поверхностно-активных веществ (тензидов). [c.404]

    Внимание автора сосредоточено главным образом на классических результатах и традиционных представлениях, основанных на формальном методе и аппарате теоретической гидромеханики и механики дисперсных текучих систем. Физическая сущность явлений, физико-химическая слецифика и прикладной аспект рассматриваемых теорий, на нащ взгляд, освещены в книге недостаточно полно. Анализ базируется на теоретических моделях для сферических частиц твердой фазы, из которых тем или иным математическим приемом выводится искомое соотношение, связывающее между собой основные характеристики задачи. [c.5]


Смотреть страницы где упоминается термин Основные характеристики дисперсной фазы: [c.158]    [c.24]    [c.56]    [c.109]    [c.712]    [c.57]    [c.26]   
Смотреть главы в:

Газовые эмульсии -> Основные характеристики дисперсной фазы




ПОИСК





Смотрите так же термины и статьи:

Дисперсная фаза

характеристики основные



© 2025 chem21.info Реклама на сайте