Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смесь дисперсная

    В колонных аппаратах химической технологии объемная доля дисперсной фазы может изменяться в очень щироких пределах - от нуля до максимально возможной, а скорости движения фаз относительно стенок аппарата имеют, как правило, тот же порядок величины, что и скорость движения частиц относительно жидкости. Поэтому взаимодействие фаз, связанное с их относительным движением, и гидродинамическое взаимодействие частиц между собой оказывают решающее воздействие на характер течения в аппарате. Для математического описания течений такого рода наибольшее распространение в последнее время получила модель раздельного движения фаз, или двухжидкостная модель [92—95]. В ней фазы рассматриваются как два взаимопроникающих и взаимодействующих континуума, заполняющих один и тот же объем [92, 95]. Фазы, составляющие дисперсную смесь, как бы размазываются по объему, занятому смесью, но при этом каждая из них занимает лишь часть этого объема Величина носит название объемной доли (или объемной концентрации) г-й фазы и является одной из основных характеристик дисперсного двухфазного потока. Объемная доля дисперсной фазы д = может называться удерживающей способностью, задержкой, газосодержанием, а объемная доля сплошной фазы ( = 6 -удерживающей способностью по сплошной фазе либо порозностью. Для двухфазного течения всегда <р + = . Приведенная плотность фазы определяется следующим образом  [c.58]


    Основная сложность в производстве металлических компози-щюниых материалов состоит в том, что необходимо обеспечить равномерное распределение порошка или волокна в объеме матрицы. Примером металлического композиционного материала является спеченный алюминиевый материал САП, представляющий собой алюминий, упрочненный дисперсными частицами оксида алюминия. Исходным продуктом для производства этого материала служит алюминиевая пудра, содержащая от 6 до 22% оксида алюминия в виде чешуек со средним размером до 10—15 мкм н толщиной менее 1 мкм. Для получения материала САП исходную смесь порошков подвергают холодному прессованию, затем спекают при 450—500 °С. Этот материал отличается большой удельной прочностью (прочность, отнесенная к плотности), особенно тепло-прочностью. С увелнченнем содержания частиц оксида алюминия предел прочности и твердость материала растут, а пластичность н удельная теплопроводность снижаются. САП успешно заменяет теплостойкие или нержавеющие стали в авиации, атомной технике, в химической промышленности и др. [c.395]

    Смесь Дисперсного сине-зеленого (370), Дисперсного синего К (368), Дисперсного алого Ж (357) и Дисперсного желтого прочного 2К илн 4К (353 нли 354) [c.783]

    Смесь Дисперсного синего К (368), Дисперсного алого Ж (357) и Дисперсного желтого прочного 2К или 4К (353 или 354) [c.783]

    Гетерофазная смесь дисперсного оксидного материала и нитрозных газов [c.164]

    Нефть представляет собой по отношению к асфальтенам смесь растворителей лиофобных (метановые) и лиофильных ( ароматика). Поэтому легкие нефти,богатые парафинами и бедные ароматикой, в растворенном состоянии содержат лишь незначительное количество асфальтенов. Основное их количество находится во взвешенном,дисперсном состоянии.Напротив,тяжелые,богатые ароматикой нефти содержат асфальтены в растворенном состоянии. [c.140]

    Битумные эмульсии. Это смесь дисперсных частиц битума с водой. Для получения эмульсии битум в расплавленном состоянии размельчается в центрифугах, а затем эмульгируется. В состав эмульсии входят (в %) битум—48, вода—50, эмульгатор (мыло, глина) — 1,5, щелочь — 0,5. Эмульсию можно наносить на поверхность разбрызгиванием из пульверизатора. После испарения волы образуется сплошная битумная пленка, которой удобно покрывать влажные поверхности. Применяется также битум, растворенный в керосине и бензине. [c.369]


    Предполагая, что дисперсная смесь состоит из частиц одинакового [c.62]

    В процессе добычи нефть интенсивно перемешивается с попутно добываемой водой, при прохождении через забойный фильтр, в скважинном насосе, в фонтанных, газлифтных, насосно-компрессорных трубах и т. д. При этом образуется тонкодисперсная смесь двух взаимно нерастворимых жидкостей — водонефтяная эмульсия. На практике чаще всего встречаются нефтяные эмульсии обратного типа, когда дисперсной фазой является полярная жидкость (вода), а дисперсионной средой — неполярная жидкость (нефть). [c.38]

    Показательно в этом плане сопоставление кривых распределения для смесей на основе фракций дистиллята вторичного происхождения, различающихся пределами кипения, фракционным и компонентным составом. Видно, что более узкая дистиллятная фракция с концом кипения 360°С (рис. 1.3) является худшим растворителем для остатков первичного и вторичного происхождения данная смесь отличается меньшей дисперсностью в сравнении с дистиллятом более широкой фракции (см. рис. 1.2). [c.9]

    Смесь на основе узкой фракции КГФ замедленного коксования по своим физико-химическим характеристикам (размеры частиц дисперсной фазы, энергия межмолекулярных связей, компонентный состав и т.п.) занимает промежуточное положение между рассмот- [c.15]

    Базируясь на коллоидно-химических представлениях, нефтя юе сырье и нефтепродукты можно рассматривать как неструктурированные (ненаполненные) и структурированные (наполненные) системы. Неструктурированные системы представляют собой смесь углеводородов, не склонных при данных условиях к межмолекулярным взаимодействиям, приводящим к образованию ассоциатов. Такие системы термодинамически стабильны, легко подвижны и не расслаиваются. Ассоциаты (дисперсная фаза) в этих системах отсутствуют. К неструктурированным нефтяным системам из товарных нефтепродуктов, не расслаивающихся в условиях изготовления и применения, относятся газы, бензины, реактивные и дизельные топлива, масла. До настоящего времени исследователи и технологи занимались получением неструктурированных систем (нефтяного сырья и нефтепродуктов), используя для этой цели процессы ректификации, экстракции, адсорбции, депарафинизации, деасфальтизации и с помощью деструктивных методов. [c.33]

    УНС, используемая в качестве полиграфических красок, должна быть однородной по всей своей массе, т. е. система должна быть устойчивой, что достигается надежной стабилизацией дисперсной фазы сольватными оболочками ПАВ (см. гл. I). Связующие вещества должны равномерно смешиваться с сажей, полученная смесь должна иметь хорошие технологические свойства адгезию краски с бумагой, обладать хорошей проникающей и впитывающей способностью. [c.114]

    Коагулирующее действие смесей электролитов часто бывает неаддитивным. Иногда для начала коагуляции требуется смесь электролитов, в большем количестве чем одного из них. Такое явление называют антагонизмом электролитов. Если же смесь электролитов действует эффективнее одного электролита, то проявляется синергизм электролитов. Очень сильное влияние на устойчивость и коагуляцию дисперсных систем оказывают электролиты, вступающие в химическое взаимодействие с противоиона-ми мицелл нли стабилизирующим электролитом. [c.337]

    Иначе обстоит дело, если смесь двух нерастворимых жидкостей находится в условиях, способствующих диспергированию, и в ней присутствует какое-либо поверхностно-активное вещество, понижающее поверхностное натяжение за счет образования адсорбционного слоя. Во-первых, это способствует дроблению капель, а во-вторых (что имеет решающее значение), капли будут окружены не молекулами дисперсной среды, а прочной пленкой адсорбционного слоя. В этом случае образуются стойкие, трудно расслаивающиеся эмульсии, так как капли дисперсной фазы, защищенные своеобразным панцирем — адсорбционной пленкой, не могут сливаться друг с другом. В некоторых случаях толщина адсорбционной пленки такова, что ее можно рассмотреть в микроскоп. [c.111]

    В обычных условиях нефти представляют собой дисперсную систему /4/. Дисперсионной средой в нефти является смесь ее компонентов, образующих в данных физико-химических условиях истинные растворы. Часть полярных молекул в этой среде может находиться в виде ассоциатов из нескольких молекул, однако не образуя самостоятельной микрофазы. Состав дисперсионной среды для конкретной нефти меняется с изменением условий существования, прежде всего температуры, из-за массообмена с [c.19]

    Красители для смеси шерсть — лавсан (ШЛ). Красители для крашения смеси ШЛ впервые выпущены фирмой ВАЗР (ФРГ) в 1965 г. под названием ланестрены. Они представляют собой смесь дисперсных и кислотных металлсодержащих красителей состава 1 2. В настоящее время выпускают следующие смесовые красители для смеси ШЛ форо- [c.122]

    В этой главе рассматриваются вопросы учета сырой нефти при ее дальнейшей транспортировке, не затрагивая вопросов измерения дебита нефтяных скважин. Под сырой нефтью будем подразумевать любую нефть (жидкость), полученную после сепарации, без всякого ограничения содержания каких-либо примесей (воды, солей, механических примесей и т.д.) и перекачиваемую на установки подготовки нефти. Эта жидкость представляет собой сложную смесь нефти, растворенного газа, пластовой воды, содержащей, в свою очередь, различные соли, парафина, церезина и других веществ, механических примесей, сернистых соединений. При недостаточном качестве сепарации в жидкости может содержаться свободный газ в виде пузырьков - так называемый окклюдированный газ. Все эти компоненты могут образовывать сложные дисперсные системы, структура и свойства которых могут быть самыми разнообразными и, самое главное, не постоянными в движении и времени. Например, структура и вязкость водонефтяной эмульсии могут изменяться в широких пределах в процессе движения по трубам, в зависимости от скорости, температуры, давления и других факторов. Всё это создаёт очень большие трудности при учете сырой нефти, особенно при использовании средств измерений, на показания которых влияют свойства жидкости, например, турбинных счетчиков. Особенно большое влияние оказывают структура потока, вязкость жидкости и содержание свободного газа. Частицы воды и других примесей могут образовывать сложную пространственную решетку, которая в процессе движения может разрушаться и снова восстанавливаться. Поэтому водонефтяные эмульсии часто проявляют свойства неньютоновских жидкостей. Измерение вязкости таких жидкостей в потоке представляет большие трудности из-за отсутствия методов измерения и поточных вискозиметров. Измерения, проводимые с помощью лабораторных приборов, не дают истинного значения вязкости, так как вязкость отобранной пробы жидкости отличается от вязкости в условиях трубопровода из-за разгазирования пробы и изменения условий измерения. Содержание свободного газа зависит от условий сепарации и свойств жидкости. Газ, находясь в жидкости в виде пузырьков, изменяет показание объемных счетчиков на такую долю, какую долю сам составляет в жидкости, то есть если объем газа в жидкости составляет 2 %, то показание счетчика повысится на 2 %. Точно учесть содержание свободного газа при определении объема и массы нефти очень трудно по.двум причинам. Во-первых, содержание свободного газа непостоянно и может изменяться в зависимости от условий сепарации (расхода жидкости, вязкости, уровня в сепараторах и т.д.). Во-вторых, технические средства для непрерывного измерения содержания газа в потоке в настоящее время отсутствуют. Имеющиеся средства, например, устройство для определения свободного газа УОСГ-ЮОМ, позволяют производить измерения только периодически и дают не очень достоверные результаты. Единственным способом борьбы с влиянием свободного газа является улучшение сепарации жидкости, чтобы исключить свободный газ или свести его к минимуму. Для уменьшения влияния газа УУН необходимо устанавливать на выкиде насосов. При этом объем газа уменьшается за счет сжатия. [c.28]


    Ткани из смеси этих волокон сначала обрабатывают на агрегате для термозольного крашения. В плюсовочную ванну вводят смесь дисперсных красителей и кубовые красители специальных марок в виде пигментов, не закрашивающих лавсан в условиях термозольного крашения. После сушки в условиях термозолирования дисперсный краситель окрашивает лавсан. [c.212]

    На практике столь соверщенный результат никогда не достИ гается, и можно даже утверждать, что в некоторых случаях такое теоретически совершенное смешивание нежелательно. Результатом смешивания может быть смесь, дисперсная система (суспензия ИЛИ эмульсия), раствор или химическое соединение. В про-мышленности при определении требуемой степени перемешивания р желаемое качество готового продукта почти во всех случаях [ является самым существенным фактором. Например при изготовлении эмульсии трескового жира (в воде) желательно самое тесное смешение, так как этот продукт ни в коей мере не должен расслаиваться наоборот, при обработкр (временном эмульгировании) некоторых бензинов раствором каустической соды следует избегать слишком устой" чивой смеси, так как впоследствии потребуется быстрое ее разделение. [c.572]

    Для оценки скорости диффузии обычно пользуются коэффициентом молекулярной диффузии. В связи с тем, что молекулярная теория жидкостей разработана относительно слабо, то невозможно оценивать коэффициент диффузии в жидкостях с такой же точностью, как, например, для газов. Учитывая то, что остатки являются многокомпонентными смесями высокомолекулярных соединений, диффузионные явления в которых осложнены стерическими факторами и межмолекулярными взаимодействиями, обычно прибегают к различного рода упрощениям, в частности условно относят рассматриваемую смесь к двухкомпонентной. Например, дисперсную фазу относят к компоненту 1, а дисперсионную среду, в которой диффундирует дисперсная фаза, к компоненту 2. Для количественной оценки значений коэффициентов молекулярной диффузии в растворах могут быть использованы эмпирические корреляции, которые достаточно подробно рассмотрены Саттерфилдом [27]. Так, для оценки коэффициента диффузии В молекул соединений с относительно малыми размерами широко используется соотношение Вильке и Чанга  [c.29]

    Крупный взрыв произошел в Техас-Сити в здании, в котором находилась установка для получения кислорода. Взрыв был вызван воспламенением горючих материалов в закрытом канале, в который попал жидкий кислород. Выяснилось, что операторы спускали жидкий кислород из одной или двух остановленных для отогревания колонн в специально устроенный колодец. В 6 м от этого колодца находился закрытый канал с воздухопроводом диаметром 600 мм (давление 560 кПа, или 5,6 кгс/см ). После взрыва на спускной линии были обнаружены в одном месте поломки, а в другом — поврежденный фланец. Проба, взятая после взрыва со дна канала, содержала 1,7% органических соединений в дисперсной форме (по-види.мому, смесь пороигеообразного изолирующего материала и отходов, которые выметают с иола). Однако основная причина —это контакт между горючим материалом и концентрированным кислородом. Спускная кислородная лнния была выполнена из алюминия. По размерам разрушения вычислили, что в зоне взрыва находилось около 6 кг жидкого масла или другого горючего материала. [c.375]

    Проведенные исследования позволяют предложить следующую схему очистки хромсоде ржащих сточных вод (рис. У1-21). Промывные воды разделяются на 2 потока один из них, составляющий 30% общего объема, направляется на обычную химическую обработку. Полученный раствор, содержащий дисперсные частицы Сг(ОН)з, смешивается с остальным объемом сточных вод, после чего смесь насосом 3 подается в мембранный аппарат 4. Фильтрат из мембранного аппарата может быть использован для промывки изделий, а концентрат пригоден для приготовления растворов, используемых при хромировании. Таким образом, предлагаемая схема позволяет сэкономить 70% химических реагентов, предотвратить сброс воды и утилизировать соединения хрома. [c.319]

    Нефть и нефтепродукты, содержащие сложные структурные единицы, называют аномальными системами. При переработке нефти, а в дальнейшем при использовании нефтепродуктов в нефтяных системах под действием различных факторов могут происходить процессы формирования и деформирования сложных структурных единиц, влияющие па вязкость и текучесть системы. Нефть и нефтепродукты, вязкость которых зависит от скорости сдвига, принято называть аномально вязкими нефтями и нефтепродуктами, а само явление — аномалией вязкости. Большая часть нефтяных остатков в условиях хранения и переработки обладает аномалией вязкости. Дисперсная фаза аномально вязких нефтей и нефтепродуктов обычно содержит парафины и асфальтены, а дисперсионная среда — сложную смесь различных растворителей (па-рафино-нафтеновые, ароматические углеводороды). Полицнкличе-ские ароматические углеводороды и смолы в зависимости от степени взаимодействия дисперсной фазы с дисперсионной средой могут входить в состав той или другой фазы. [c.17]

    Экстрактор в данном случае представляет собой распылительную колонну, в которой диспергируется более легкая фаза (экстрагент). Выходящие из pa npeAeJ ителя дисперсной фазы капли-поднимаются вверх и, пройдя раЗочую зону экстрактора, поступают в верхнюю отстойную зону, где коалесцируют, образуя слой легкой фазы (экстракт). П ютивотоком экстрагенту движется сплошная фаза, из которой в данном случае извлекается экстрагируемое вещество. Очищенная исходная смесь (рафинат) собирается в нижней отстой ой зоне (ниже распределителя дисперсной фазы), где отстаивае ся от капель экстрагента и самотеком через гидрозатвор поступает в сборник рафината Ej. Гидрозатвор переменной высоты для от юда более тяжелой фазы позволяет, с одной стороны, автомат чески поддерживать постоянное положение границы раздела ежду фазами в верхней отстойной зоне и, с другой стороны, да гт возможность изменять это положение для увеличения, напри. lep, высоты слоя легкой фазы и более лучшего ее отстаивания. [c.137]

    Для подавления ванадиевой коррозии в качестве присадки к мазуту применяют перолин — патентованное вещество американского производства. Перолин представляет собой смесь жидкого дистиллированного горючего с мельчайшим порошком кремния, который находится в жидкости в дисперсном состоянии. [c.155]

    Рассмотрим монодисперсную смесь, в которой согласно ячеечной схеме каждой дисперсной частице в среднем соответствует некоторый регулярный объем несущей фазы. Движение внутри этой ячейки (распределение скоростей, плотностей, давлений и других параметров) задается. Движение вокруг остальных дисперсных частиц элементарного макроскопического объема в среднем полагается таким же, как и в выделенной ячейке, т. е. предполагается некоторая регулярная турбулентность или некоторая почти периодичность микропараметров в пространстве с линейным периодом 21, равным среднему расстоянию между включениями. На рис. 1.3 представлено разбиение поля течения на ячейки при простейшем регулярном и равномерном расположении сферических частиц постоянного радиуса а, причем аг—в /в, 0г=4ла 73, 9 = [c.127]

    Известно, что твердые углеводороды, кристаллизующиеся из масла, представляют собой смесь углеводородов парафинового, нафтенового и ароматического рядов. Большинство твердых углеводородов относится к изоморфным веществам, способным кристаллизоваться вместе, образуя смешанные кристаллы. Очевидно, что одна из возможностей образования смешанных кристаллов обусловлена наличием у компонентов длинных углеводородных цепей (в основном нормального строения). Исследования микроструктуры смешанных кристаллов при помощи электронного микроскопа показали, что форма кристаллов и в особенности их размеры в оптимальных условиях охлаждения зависят от концентрации твердых углеводородов, зфтя и относящихся к разным классам, но близких по температуре плавления, и от того, какой тип углеводородов составляет зародыш будущего кристалла. Существенное влияние на формирование кристаллов оказывает вязкость дисперсионной среды (масла) чем выше вязкость среды, тем меньше радиус сферы, из которой выделяющиеся молекулы дисперсной фазы (твердых углеводородов) могут достичь зародыша кристалла, т. е. тем вероятнее возникновение новых центров кри- [c.150]

    Реакции гидрообессеривания и гидрокрекинга ТНО в процессах с реакторами с кипящим слоем катализатора осуществляются в трехфазном слое Т-Ж-Г, где твердая фаза представлена суспензированным дисперсным катализатором диаметром < 0,8 жидкая фаза - смесь сырья и продуктов, а газовую фазу образует водород, пары углеводородов, сероводород и аммиак. Кипящий слой создается с помощью жидкой фазы, для обеспечения линейной скорости которой (0,2-0,3 м/с) ее подают на циркуляцию с помощью специальных насосов внутреннего или внешнего монтажа. Работа с кипящим слоем катализатора позволяет обеспечить более интенсивное перемешивание контактирую1цих фаз, изотермический режим реагирования и поддержание степени конверсии сырья и равновесной активности катализатора на постоянном уровне за счет непрерывного вывода из реакторов части катализаторов и замены их свежими или регенерированными. [c.198]

    Конденсация. Все методы конденсации, или конденсационные методы, сводятся к тому, что частицы предельно раздробленного вещсства, т. е. вещества, находящегося в растворенном состоянии или в виде пара, когда его молекулы разобижены, подвергаются укрупнению, соединяясь друг с другом и образуя более крупные агрегаты. Процесс коггденсации вещества в состоянии отдельных молекул (или нонов) может произойти только в том случае, если это вещество пересыщает раствор или газовую смесь. Таким образом, кондеисациоиный процесс образования гетерогенной дисперсной системы происходит в две стадии 1) образование пересыщенного раствора или пара и 2) собственно конденсация из пересыщенного раствора или пара. Конденсационные методы отличаются от дисперсионных тем, что раз начавшийся процесс конденсации идет далее самопроизвольно и сопровождается отдачей энергии. Все усилия при искусственном иолучении гетерогенных дисперсных систем иосредством метода конденсации сводятся к получению пересыщенного раствора или пара, что может быть достигнуто двумя способами 1) понижением растворимости или давления пара путем охлаждения или замены растворителя или 2) образованием [c.189]

    Обычно в вихревых трубах используют короткие тангенциальные сопловые вводы. Мы предлагаем использовать винтовое закручивающее устройство (ВЗУ) [11]. ВЗУ представляет собой цилиндрический или конический корпус с центральным диафрагмовым отверстием или без него (прямоточный вариант вихревой трубы с ВЗУ), на наружной поверхности которого выполнена одно-или мнргозаходная прямоугольная винтовая нарезка с уменьшающейся высотой за счет плавного роста диаметра при постоянной ширине. ВЗУ с такой нарезкой после установки на входной конец трубы образует суживающиеся винтовые каналы — винтовые сопловые вводы (рис. 1.9, 1.10). Когда парогазовая смесь, которая может содержать и дисперсную фазу в виде тумана, входит в каналы [c.10]

    Нами выполнен анализ на групповое содержание легколетучих растворимых и нерастворимых в воде веществ. Паро-газодисперсную смесь отбирали после конденсаторов и фильтра с пилотной установки. Газ просасывали с помощью аспираторов через стеклянную трубку с ватными тампонами, два дрекселя с дистиллированной водой и два дрекселя с гидроксиламином. Прошедший через дрексели газ отбирали в газовую бюретку и анализировали хроматографически. С помощью анализа не были обнаружены легколетучие кислоты, альдегиды, кетоны. Хроматографический анализ газа в бюретке дал несколько повышенное содержание диоксида углерода. По результатам анализа дисперсная фаза (белый мелкокристаллический порошок) включала до 50% дурола и до 20-25% альдегидов — производных бензальдегида. Ниже приведены заводские данные седиментационного анализа усредненной пробы ПМДА-сырца из циклонов по счетчику Культера. [c.109]

    Как уже отмечалось, какая-то доля наиболее мелкодисперсной фазы, внесенной и образующейся в каналах ВЗУ, попадала в осевой охлажденный поток, в котором, кроме того, происходила и дополнительная конденсация паровой части. Вращающаяся газопародисперсная смесь, поднимаясь по трубе (3), соударялась с внутренней поверхностью насадки (4) и скользила к ее краям. При этом происходила частичная агломерация мелкодисперсной фазы. На выходе из насадки газ и дисперсная фаза увлекались и эжектировались исходным потоком и, совместно взаимодействуя, поступали в каналы ВЗУ. [c.111]

    Использование воды в составе водно-топливных эмульсий. Водно-топливные эмульсии представляют собой смесь из двух взаимно нерастворимых жидкостей, одна из которых (дисперсная фаза) в виде мельчайших капель равномерно распределена в другой (дисперсионной среде). Эмульсии (рис. 4.16) явля- [c.165]

    В качестве аэрозоля используют смесь активного компонента с пропеллентом, водой, эмульгатором, духами. Это коллоидный раствор, в котором тонкодиспергированные (размером около 10— 50 мкм) жидкие или твердые вещества взвешены в газе или лег-коиспаряющейся жидкости. Дисперсная фаза — активный компо- [c.350]

    Одним из вариантов коагуляции является взаимная коагуляция разнородных дпсперсных систем — гетерокоагуляция. Если поверхности дисперсных фаз смешиваемых систем имеют заряды противоположного знака, то гетерокоагуляция происходит тем полнее, чем полнее произойдет нейтрализация зарядов частиц. Прн сме-и1ении систем с одноименно-заряженными частицами, как правило, образуются устойчивые смешанные системы, но возможна и гетерокоагуляцня, вызываемая, например, перераспределением стабилизаторов, приводящим к уменьшению степени стабилизации. [c.345]

    Чтобы понизить диэлектрическое поглощение самой дисперсной фазы, Драйден п Мекинс в дальнейших экспериментах использовали в качестве непрерывной фазы смесь нефтяного желе с 3—10% раствором шерстяного воска. График зависимости е" — lg / для этих систем, в противоположность рис. У.35, имеет симметричную форму относительно частоты максимальных потерь, а площади, описываемые кривыми е", т. е. — ef , больше полученных расчетным путем из теорпи Вагнера. Например, при содержании воды 10 и 20% площадь, полученная по экспериментальным значениям, на 25 и 70%, соответственно, больше площади, вычисленной по теории Вагнера. При использовании теории Ханаи эти величины становятся еще больше. Такое расхождение объяснено широким распределением частиц воды по размерам (0,5—5,5 мкм) в этих системах. Кроме того, значения е, — могут быть больше вследствие эффекта агломерации, как в экспериментах Ханаи (см. стр. 375), когда эти значения уменьшались с ростом сдвигового потока. [c.373]

    Всякая эмульсия, в том числе и нефтяная, может образоваться только тогда, когда механическое воздействие на смесь двух взаимно нерастворимых жидкостей будет вызывать диспергирование, т. е. дробление жидкости на очень мелкие частицы. Ясно, что чем меньше поверхностное натяжение жидкостей, тем легче будет идти образование капель, т. е. увеличение общей поверхности жидкости, так как оно будет требовать меньшей затраты работы. Однако после перемешивания двух чистых, нерастворимых друг в друге жидкостей стойкость полученнсн эмульсии обычно невелика. Более тяжелая жидкость осядет на дно, капельки дисперсной фазы, сталкиваясь друг с другом, объединятся в более крупные. Оба эти процесса и приведут к расслаиванию эмульсии на два слоя. Только при очень высокой степени дисперсности, когда диаметр капель дисперсной фазы измеряется десятыми долями микрометра (10- м) и межмолекулярные силы уравнивают гравитационные силы, разрушение эмульсии становится затруднительным. [c.111]

    В. Брейем и Ф. Фрезером [1] на основе смесей различных окислов металлов. В конечном итоге наилучшие результаты показал гопкалит из четырех компонентной смеси окислов 50% МпОд, 30% СиО, 15% С02О3 и 5% Ag20. Позднее были разработаны не менее активные двухкомпонентные катализаторы, например смесь из 60% МпОа и 40% СиО. Активность гопкалитов во многом зависит не только от состава, но и от метода получения, дисперсности окислов, хранения, влажности и т. д. [c.176]


Смотреть страницы где упоминается термин Смесь дисперсная: [c.783]    [c.22]    [c.44]    [c.255]    [c.377]    [c.91]    [c.305]    [c.273]    [c.36]    [c.203]    [c.268]   
Динамика многофазных сред Часть 1 (1987) -- [ c.15 , c.60 , c.105 , c.133 ]




ПОИСК







© 2024 chem21.info Реклама на сайте