Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные характеристики жидких растворов

    Основные характеристики и параметры ингибиторов коррозии цвет, вязкость, содержание активного вещества, плотность, кислотное число, вязкость при повышенных температурах (60—100 °С), температура плавления, термостабильность и защитный эффект в средах, где ранее проводили опыты. Дополнительно к этому перед использованием ингибиторов на промысле исследуют их растворимость в дистиллированной воде и растворителе. Растворимость ингибитора определяет технологию его применения, конструктивное исполнение узла подачи. Ингибитор коррозии считают нерастворимым в жидкой среде, если он быстро коагулирует и выпадает в осадок в виде хлопьев или отдельных капель либо всплывает в ней. Ингибитор считается растворимым в исследуемой среде, например в сточной воде, если 1 %-ная концентрация его даст прозрачный, равномерный по объему раствор. При мутной окраске среды и при отсутствии расслоения в течение длительного времени ингибитор считается коллоид-но-диспергируемым. [c.216]


    VI.2. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЖИДКИХ РАСТВОРОВ [c.147]

    Особый интерес представляет изучение полистирольных растворов люминофоров. Как видно из табл. 33, в полистироле исследованные люминофоры обладают более высокой радиационной устойчивостью, чем в жидких растворах. Даже при дозах 1—10 Мрад содержание производных этилена и оксазола практически не изменяется, а в случае производных пиразолина эти изменения очень малы. Так как сцинтилляционные характеристики в этих случаях снижаются очень резко, это позволило нам сделать вывод, что радиационное повреждение пластмассовых сцинтилляторов обусловлено в основном изменениями в полимерной основе. [c.192]

    Затруднительность или даже невозможность перевода многих молекул и макромолекул в газовую фазу, важность прямой хроматографии жидких молекулярных растворов в химии полимеров, в биохимии. Выбор неподвижной фазы — жидкости или адсорбента. Основные характеристики распределения между двумя жидкими фазами и адсорбции из жидких растворов. [c.299]

    Согласно определению понятие раствора охватывает любые агрегатные состояния системы —жидкие,—газообразные и твер-дые. Примерами растворов являются нефть и нефтепродукты, естественный нефтяной газ и воздух, жидкие и твердые сплавы металлов и расплавленные смеси силикатов. Основной характеристикой раствора является совершенно равномерное распределение составляющих его вешеств друг в друге. В этом смысле необходимо отличать растворы от химических соединений и простых смесей. Химические соединения состоят из молекул одного лишь вида и с точки зрения правила фаз являются однокомпонентными системами, не подходящими под определение понятия раствора. В растворе же число составляющих веществ может быть любым, ибо молекулы их в растворе сохраняются химически неизменными. От простых смесей растворы отличаются совершенно равномерным распределением молекул компонентов по всему объему фазы, тогда как жидкие смеси, называемые суспензиями, эмульсиями или коллоидными растворами, являются системами из двух или большего числа фаз, перемешанных с различной степенью дисперсности. [c.67]

    Выше предполагалось, что нелетучая часть разбавителя в основном является жидкой, но она может, разумеется, содержать растворенные твердые вещества с высокой или низкой механической прочностью, с хорошей или плохой адгезией к частицам полимера и т. д., а также обладать всеми другими возможными характеристиками. (Конечно, только в очень специальных случаях такое твердое вещество окажется молекулярно совместимо с самим полимером, поскольку, но определению, твердое вещество первоначально было растворено в среде, в которой полимер нерастворим.) [c.274]


    Основные научные исследования посвящены кинетике и механизму быстрых химических реакций Создал уникальные установки больщой мощности для импульсного фотолиза. Получил кинетические характеристики элементарных реакций переноса электронов в жидких растворах с участием сложных ароматических молекул. Изучил кинетику триплетного состояния хлорофилла б. Исследовал реакционную способность большого количества короткоживущих ароматических анион-радикалов Разработал новые методы изучения физико-химических свойств полимеров и растворов полимеров. [c.240]

    При изучении спектров поглощения органических соединений в растворителях различной полярности обычно наблюдается влияние природы растворителя на положение, интенсивность и форму полос поглощения [1—4]. Причина этих эффектов заключается в том, что взаимодействия между молекулами растворенного вещества и растворителя (в том числе ион-дипольные, диполь-дипольные, индуцированного и постоянного диполей, водородные связи и т, д.) прежде всего изменяют разность энергий между основным и возбужденным состояниями поглощающих частиц, содержащих хромофор. Влияние среды на спектры поглощения можно изучать, сравнивая спектры в газовой фазе и в растворе или в нескольких растворителях различной природы. Поскольку в больщинстве случаев регистрировать спектры поглощения в газовой фазе не удается, то в этой главе будет рассматриваться только второй метод изучения. Такой подход представляется вполне оправданным, поскольку в последние годы появляется все больше данных, свидетельствующих о непрерывном изменении спектральных характеристик при переходе от изолированных молекул (газовой фазы) к слабо или сильно взаимодействующим жидким средам, если только отсутствуют специфические взаимодействия типа ДЭП/АЭП или образование водородных связей [3]. [c.403]

    При кристаллизации солей из растворов основной характеристикой, выражающей распределение компонентов между жидкой и твердой фазами, является коэффициент кристаллизации О, который для случая двух солей 1 и п можно записать в виде  [c.13]

    В последние годы область непо сред ственного контакта металла с окружающей средой (в основном — вакуума) получила свое физическое обоснование лишь благодаря успехам в области теории неоднородного электронного газа металла (см. [48 -52,13] и библиографию к ним), основанной преимущественно на методе функционала электронной плотности. Применимость данного метода для границы металл - жидкость весьма затруднительна, поскольку сама жидкость также обладает ориентированным слоем поверхностных молекул, ответственных за возникновение скачка потенциала со стороны жидкой фазы. Однако несомненно, что на этой границе не последнее влияние оказывает плотность электронного газа металла и ее распределение вблизи поверхности ( электронные хвосты ). В связи с трудностями интерпретации поверхностных явлений в первом приближении целесообразно использовать простые феноменологические представления и определить с их помощью ту группу параметров, которые формируют свойства поверхности и ее электрические характеристики. Основываясь на фундаментальных законах электростатики, можно безмодельно описать межфазную границу металл - раствор и ответить на главный вопрос — какие факторы и в какой степени формируют скачок межфазного потенциала, т. е. решить проблему Вольта. [c.37]

    Теоретические представления о свойствах двойного электрического слоя на границе электрод/раствор электролита количественно соответствуют экспериментальным данным, полученным на ртути и некоторых жидких амальгамах II ]. Естественно поэтому, что для определения границ применимости указанных представлений к твердым электродам и выяснения вопроса о влиянии природы металла на свойства двойного слоя сравнивают основную характеристику двойного слоя — его емкость — на твердых металлах и ртути в различных условиях. Емкость двойного слоя на твердых металлах, так же как и на ртути, может быть определена путем измерения импеданса границы электрод/электролит. Однако при первых попытках определения емкости двойного слоя на твердых электродах из измерений импеданса возникли большие трудности. Причина этих трудностей в том, что в отличие от ртути многие твердые электроды способны адсорбировать водород и бывают идеально поляризующимися лишь в сравнительно узком интервале потенциалов, чаще же в большинстве электролитов вообще не обладают таким свойством. В результате этого электрическая эквивалентная схема границы твердый электрод/электролит содержит наряду с емкостью, эквивалентной двойному слою, одну или несколько электрических цепей, импеданс которых характеризует электрохимические процессы, и первой задачей является выделение емкости, эквивалентной двойному слою, из суммарно измеряемого импеданса. [c.5]


    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    Отметим в заключение некоторые особенности диаграмм поверхностного натяжения. По экспериментальным данным можно построить две изотермы поверхностного натяжения, считая его функцией состава фазы (а) или фазы (р). Поскольку составы фаз при равновесии однозначно связаны друг с другом, обе эти изотермы в термодинамическом отношении равноценны и являются характеристикой состояния системы. Это верно и для систем жидкий раствор — пар, хотя в таких системах вдали от критической точки поверхностное натяжение создается в основном жидкой частью поверхностного слоя (см. 8 главы П1). Поэтому, зная изотерму состава пара, всегда можно построить изотерму поверхностного натяжения в переменных состава пара, как показано на рис. 11. Полученные таким образом диаграммы поверхностного натяжения напоминают аналогичные диаграммы для температуры или давления с той разницей, что области, лежащие выше и ниже изотерм поверхностного натяжения, не имеют физического смысла, так как любая диаграмма поверхностного натяжения может относиться только к двухфазному равновесию. Использование изотермы поверхностного натяжения в переменных состава пара оказывается полезным при нахождении состава поверхностного слоя (см. главу VI, 6), так как пар часто можно считать идеальным, что значительно упрощает термодинамические расчеты. Если же найден и состав поверхностного слоя как функция состава раствора и [c.113]

    Понятие о флуктуациях было введено раньше, чем представление о радиальной функции распределения, и давно уже стало одним из основных понятий статистической физики. Но в теории растворов оно долгое время играло сравнительно небольшую роль. В течение многих лет господствовало мнение, согласно которому флуктуации не являются существенной характеристикой структуры жидкости и не оказывают заметного влияния на свойства жидких систем, если жидкости не находятся в непосредственной окрестности критической точки жидкость — пар или критической точки расслаивания. Исследования ([9, 26] идр.), проведенные в течение последних двух десятилетий, показали, что это мнение во многих случаях не соответствует действительности. [c.127]

    В химической промышленности для разделения кристаллических суспензий наиболее широкое распространение получили методы фильтрования. Кристаллические суспензии, как правило, образуются либо в результате химических реакций с выпадением твердой фазы, либо в кристаллизационных процессах за счет охлаждения или упаривания растворов. Свойства суспензий определяются физико-химическими характеристиками жидкой и твердой фаз, в зависимости от которых и происходит выбор того или иного типа оборудования для разделения суспензий. Основными характеристиками, определяющими скорость фильтрования суспензий, являются размер частиц кристаллической фазы и вязкость жидкой фазы. Крупность кристаллов зависит от условий проведения процесса на предыдущих стадиях температурные режимы, режимы перемешивания, составы исходных компонентов и др.). В производственных условиях обычно стремятся получать более крупнокристаллический и однородный продукт, однако при кристаллизации органических веществ в большинстве случаев получаются мелкие кристаллы. Суспензии, как правило, полидисперсны, т. е. состоят из частиц различного размера. Для суспензий характерно существование непрерывных функций распределения частиц по размерам. В зависимости от условий образования суспензий эти функции подчиняются определенным закономерностям. Кривые распределения частиц по размерам, представленные в системах координат процентный состав — размер частиц, в большинстве случаев имеют один максимум, однако возможны два и более максимумов в зависимости от условий получения суспензии. [c.5]

    При изучении механизма мембранных процессов разделения жидких смесей необходимо учитывать три основных фактора и их взаимосвязь 1) структуру мембраны 2) структуру разделяемого раствора и его основные термодинамические характеристики 3) взаимодействие раствора (и растворенного вещества) с материалом мембраны. [c.200]

    В химической и смежной с ней отраслях промышленности жидкие смеси, концентрирование которых осуществляется выпариванием, отличаются большим разнообразием как физических параметров (вязкость, плотность, температура кипения, величина критического теплового потока и др.), так и других характеристик (кристаллизующиеся, пенящиеся, нетермостойкие растворы и др.). Свойства смесей определяют основные требования к условиям проведения процесса (вакуум-выпаривание, прямо- и противоточные, одно- и многостадийные многокорпусные выпарные установки), а также к конструкциям выпарных аппаратов. [c.86]

    В классической термодинамике такая связь между различными функциями выражалась при помощи уравнения состояния. Это уравнение, однако, нецелесообразно использовать для описания жидких и твердых растворов. Таким образом, применительно к реальным растворам задача состоит в том, чтобы по любому свойству иметь возможность предсказать все остальные. При этом возникает вопрос, какую характеристику раствора принять за основную. Такая характеристика должна удовлетворять следующим требованиям  [c.109]

    Из всего многообразия растворов, которые классифицируют или по размерам частиц (взвеси, коллоидные растворы, истинные растворы), или по агрегатному состоянию растворителя и растворенного вещества (газ — газ, газ — жидкость, газ — твердое, жидкость — жидкость, жидкость — газ, жидкость — твердое, твердое — газ, твердое — жидкость, твердое — твердое), остановимся на рассмотрении жидких истинных растворов и характеристике их основных свойств. [c.122]

    Классификация растворителей вытекает из свойств водородных соединений метан — инертный растворитель (и все углеводороды), аммиак — основной, вода — амфотерный, фтороводород — кислый. Важнейшая характеристика растворителей — их диэлектрическая проницаемость. По ее величине все растворители располагаются в элю-отропный ряд Цвета — Траппе. Этот ряд связан с полярностью и сор-бируемостью веществ ( 24, 45, 173). Меняя химический состав растворителя, можно изменять силу растворенных в нем кислот и оснований и преврашать соли в кислоты или основания. Например, мочевина Нз —СО—1 Н2 проявляет в жидком аммиаке кислотные свойства, в безводной уксусной кислоте — сильные основные, в водном растворе — слабые основные. [c.50]

    На примере определения летучих галогенированных соединений в водопроводной воде экспериментально установлены основные характеристики проточного парофазного анализа. Разработана методика определения общей органической серы в нефтепродуктах, включающая полный гидрогенолиз связей -S, с улавливанием образующегося сероводорода водным раствором щелочи и его газохроматофафическим определением. Исследованы возможности газохроматофафического парофазного анализа для изучения равновесия жидкость - пар в четырехкомпонентных системах и показана возможность расчета состава жидкой фазы по данным о зависимости давления конденсации паровой фазы от ее состава. [c.99]

    Для всех смазочн х материалов, работающих в условиях гидродинамического режима, основной характеристикой их является внутреннее трение, определяемое коэффициентом вязкости. Но, как уже достаточно ясно вытекает из целого ряда докладов, зачитанных на данном совещании, и вообще достаточно хорошо известно вязкость коллоидных растворов (рассчитанная по обычным формулам вискозиметрии) не является их физической характеристикой и, не может служить, следовательно, величиной, необходимой для расчетов для гидродинамической теории смазки. И если для коллоидных систем исследование вязкости имеет очень большое значение с точки зрения изучения их строения (образование структуры и ее разрушение), то для применения смазочного материала в качестве такового вязкость в первую очередь имеет значение как механическая характеристика. С этой точки зрения для смазок коллоидной структуры нельзя пользоваться теми величинами, которые могут быть получены методами обычной вискозиметрии. Даже в тех случаях, когда, казалось бы, достаточно жидкая смазка протекает через капилляр с вполне приемлемой скоростью это течение может быть не характерно для поведения данной смазки в смазочной пленке, если смазка обладает так называемой аномальной структурной вязкостью. [c.214]

    Водные растворы электролитов обладают целым рядом особых, уникальных свойств, выделяющих их из общего ряда жидких растворов. Основной причиной этого служит проявление структуры воды в специфике взаимодействия ио1 вода. Гидратация ионов может быть охарактеризована так называемыми эффектами гидратации. Их количественной мерой являются термодинамические характеристики, изотопные эффекты гидратации, химические сдвиги ЯМР, смещение полос поглощения в ИК-спектрах, изменение частот спин-рещеточной релаксации, изменение дифракционных картин рассеяния рентгеновских лучей и неупругого рассеяния нейтронов и др. При интерпретации указанных проявлений гидратации все большее место занимают структурные представления, поскольку они позволяют глубже оценить роль среды в ионных реакциях в растворах. [c.136]

    Термодинамическая характеристика раствора содержит зависимость основных термодинамических свойств раствора от состава в возможно широких интервалах температуры и (гораздо реже) давления. Основными термодинамическими функциями раствора являются энтальпия образования раствора ДЯ (теплота образования моля раствора из чистых компонентов обычно жидкого раствора из жидких компонентов или иные оговоренные условия) и энтрол я образования А5ж моля раствора из чистых компонентов (те же условия). Эти две характеристики должны быть даны как функции от х (обычно графические) для бинарного и как функции от Х и дгг для тройного раствора. Энергия Гиббса для моля раствора является сочетанием двух упомянутых функций [c.12]

    Структура электронных спектров сложных молекул в жидких растворах и стеклах выражена слабо. В лучщем случае удается идентифицировать несколько колебательных интервалов между пиками непрерывных полос поглощения. Тепловые флуктуации в жидком состоянии, по-видимому, мало влияют на общий вид этих спектров, хотя они могут в заметной степени зависеть от природы растворителя и температуры. С одной стороны, даже при отсутствии каких-либо специфических взаимодействий между молекулами растворенного вещества и молекулами растворителя, конечно, будет происходить сильная взаимная поляризация. С другой стороны, профиль электронной полосы поглощения будет зависеть от заселенности различных колебательных уровней энергии основного состояния. Поэтому, для того чтобы рассмотреть спектральные характеристики разбавленных растворов асимметричных молекул в оптически неактивной среде, примем следующую модель. Предположим, что каждая молекула растворенного вещества занимает ячейку внутри локальной жесткой матрицы, образованной молекулами растворителя. Эти ячейки имеют низкую симметрию или лищены симметрии, так как их форма определяется формой асимметричных молекул, которые они окружают. В отсутствие постоянных полей их оси беспорядочно ориентированы в пространстве. Поступательные и вращательные степени свободы молекул растворенного вещества проявляются теперь как колебательные и крутильные ветви с низкими основными частотами. Мы будем называть их либрациями . Упругие силы, соответствующие либрациям, зависят от микрокристаллического окружения, которое предполагается инертным. [c.54]

    В жидких средах коррозия стали определяется содержанием водородных ионов pH, а также наличием в среде депассивирующих ионов (типа хлор-иона). Водородный показатель pH является одним из основных характеристик активности водородных ионов. В чистой воде и нейтральных растворах рН = 7 (водородный показатель измеряется как отрицательный логарифм водородных ионов). Для кислых сред сильно возрастает активность ионов водорода (рН<7), в щелочных — ионов гидроксида (pH >7). Процесс коррозии затормаживается при значениях pH выше 9. [c.37]

    В настоящее время диэлкометрию применяют для характеристики химических соединений, для определения концентрации примесей в растворах плохо проводящих жидкостей, для определения чистоты органических и неорганических веществ и др. Наиболее широко она применяется при определении содержания воды в твердых, жидких и газообразных веществах. Для определения влаги строят градуировочный график в координатах г - V, где V - содержание воды в объемных процентах. Это достигается путем ее добавления к хорошо высушенному основному веществу. Высокая диэлектрическая проницаемость воды (е = 80,4 при 20 °С) позволяет определять ее содержание с высокой точностью в органических растворителях и газах. Для этого в ячейку помещают вещество, поглощающее влагу, например Р2О5, и пропускают через нее исследуемый газ. По изменению емкости ячейки во времени и скорости протекания газа определяют содержание воды в газе. [c.170]

    Удельная поверхность обычно более доступна для экспериментального определения, чем размер частиц. Универсальный метод измерения удельной поверхности основан на явлении адсорбции, при которой происходит налипание на поверхность частиц молекул некоторого вещества, присутствующего в дисперсионной среде (в одной из непрерывных фаз) в качестве одного из компонентов среды. Это может быть растворенное в жидкой среде вещество или сама газообразная фаза, если средой является газ (для единообразия газообразное вещество можно считать растворенным в вакууме и характеризовать его концентрацией с, как и настоящий раствор). Термин адсорбция употребляется для обозначения явления и количества адсорбированного вещества. Адсорбрфованное на поверхности частицы вещество увеличивает ее размер. На рис. 3.1 слой адсорбированного вещества (адсорбционная оболочка) показан в виде прозрачного ореола вокруг более темного тела самой частицы. Роль оболочки не сводится к изменению основной геометрической характеристики системы — размера частиц. Самым важным свойством таких оболочек является их способность предотвращать слипание частиц при их столкновениях. [c.548]

    Химическая характеристика промышленных жидких стекол в ootBeT TBHH с действующей технической документацией включает содержание основных оксидов (510г, НгО), их мольное соотношение (модуль), содержание примесных оксидов (АЬОз, РегОз, СаО, SO3) и плотность раствора. Содержание основных оксидов промышленных натриевых жидких стеклах в пределах стандартной плотности приведено в табл. 28. [c.141]

    Апротонные лазерные жидкие материалы состоят из растворов солей редкоземельных элементов в неорганических растворителях. Лазерный эффект был достигнут пока только для ионов неодима N(1 + в селен- и фосфороксихлоридах. Основные генерационные характеристики этих лазеров приведены в табл. 33.15. Типичные спектры поглощения ионов неодима показаны на рис. 33.46. Значения поглощения в максимумах полос поглощения неодима в зависимости от типа неорганического растворителя указаны в табл. 33.16. Общие характеристики апротонных лазеров на ионах неодима  [c.758]

    Как показали А. И. Ципман и Л. А. Даниелян [25], зная три основных фактора, влияющих на потенциостатические характеристики Ст.З в аммонийно-аммиачных растворах (pH, природа и концентрация примесей, концентрация аммиака), можно прогнозировать коррозионно-электрохимическое поведение Ст.З в этих растворах и управлять искусственно наведенной пассивностью. Дворацек и Нефф [19] приводят данные о коррозионно-электрохимическом поведении Ст.З в 25%)-ной аммиачной воде без указания на величину pH и наличие примесей. В работе [4] определена только возможность анодной защиты в 28—30%-ном ННз с pH 13—14. Углеродистая сталь в аммиачных растворах жидких азотных удобрений (аммиакатах, углеаммиакатах или в аммиачной воде) может находиться либо в пассивном, либо в активном состоянии [26]. Однако причины этого явления не установлены. Например, по справочным данным [27, с. 36], в концентрированных 25%-ных растворах аммиачной воды скорость коррозии Ст.З превышает 0,1 мм/год, но в таких же растворах скорость коррозии может составлять 0,3—0,5 мм/год, что подтверждается результатами обследования промышленного оборудования и согласуется с данными [19, 20]. [c.43]

    Основное преимущество в исследовании взаимодействий в растворах спектральными методами заключается в возможности получения воспроизводимых количественных спектральных характеристик взаимодействия (значений частот, абсолютных интенсивностей и формы контура полос поглощения). Однако про гресс в изучении природы межмолекулярных взаимодействий в растворах, и особенно специфических взаимодействий, связан также со значительными ограничениями, главным образом вследствие трудности выделения взаимодействия одной молекулы или интересующего исследователя звена молекулы с другой молекулой или данным ее звеном. Во всех случаях исследования растворов необходимо учитывать влияние на это взаимодействие окружающих со всех сторон молекул растворителя, быстрого перемещения молекул в растворе, отсутствия упорядоченности в расположении их относительно друг друга и других факторов, характерных для жидкого состояния. [c.17]


Смотреть страницы где упоминается термин Основные характеристики жидких растворов: [c.13]    [c.51]    [c.311]    [c.125]    [c.340]    [c.674]   
Смотреть главы в:

Курс общей химии -> Основные характеристики жидких растворов

Курс общей химии -> Основные характеристики жидких растворов

Курс общей химии -> Основные характеристики жидких растворов

Предмет химии -> Основные характеристики жидких растворов




ПОИСК





Смотрите так же термины и статьи:

Растворы жидкие

характеристики основные



© 2025 chem21.info Реклама на сайте