Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некоторые особые случаи образования С—Mg-связи

    Явления, обнаруживаемые при бомбардировке вещества гамма-лучами, связаны либо с эффектом Комптона, либо с фотоэлектрическим эффектом. Поступающая энергия гамма-лучей выявляется в этих двух эффектах. Поскольку бомбардировка каждого элемента представляет собой особый случай, то для того чтобы дать полное описание явления, пришлось бы рассмотреть огромное число примеров. В тех случаях, когда подтверждается правильность некоторых очень важных допущений, можно определить порядок величины для распределения энергии при непосредственном взаимодействии гамма-лучей с веществом. Последующее поглощение вторичных излучений, а также образование ионов и возбужденных состояний будут рассмотрены ниже. Изменения соответствующего поперечного сечения для эффекта Комптона (ос) и фотоэлектрического эффекта (ор) как функции энергии поступающего гамма-излучения известны для большого числа элементов [47, 49, 50]. На рис. 7 приведены эти изменения для воздуха, алюминия, меди и свинца. В случае гамма-лучей с высокой энергией имеет место только эффект Комптона, тогда как причиной рассеяния энергии мягкого гамма-излучения является один лишь фотоэлектрический эффект. Кривые, которые показывают изменения поперечного сечения для обоих указанных эффектов, пересекаются при энергии Ег, характерной для данного элемента мишени. Изменения значений Ег, нанесенных на график, в зависимости от атомного номера Z, как видно из рис. 8, дают правильную кривую. [c.191]


    Конденсация может быть определена как реакция образования новых связей углерод — углерод, в результате которой получаются соединения более высокого молекулярного веса. Полимеризация, следовательно, является реакцией конденсации, но представляет особый случай ее и рассматривается отдельно. В литературе отсутствуют подробные данные исследований реакций конденсаций, протекающих при каталитическом крекинге, однако очевидно, что такие реакции играют существенную роль в образовании кокса и некоторых других продуктов в процессе каталитического крекинга. [c.417]

    В этой связи совсем кратко ниже освещены еще некоторые экспериментальные факты, при которых играет роль образование водородных мостиков с водой. Меркаптаны в воде едва растворимы, так как водород у серы мало способен к образованию водородных мостиков, а сера в свою очередь не принимает никакого участия в образовании водородной связи. Последнее является причиной нерастворимости тиоэфиров в воде. Напротив, эфиры, особенно низшие, обладают не слишком малой растворимостью в воде (для диэтилового эфира при 15° около 1 части эфира в 14 частях воды и, наоборот, около 1 части воды в 80 частях эфира). Для эфиров возможно одностороннее образование водородной связи с участием кислорода эфира. По сравнению со спиртами эфиры в воде растворяются с трудом, ПОТОМУ что для эфира нельзя получить водородной связи от эфира к кислороду воды (ср. вышеприведенные соотношения концентраций в водной и эфирной фазах ), в то время как в спиртах имеется атом водорода, способный к образованию водородной связи, т. е. могущий вступить во взаимодействие с кислородом воды. В качестве особого случая следует упомянуть еще довольно значительную по сравнению с другими углеводородами растворимость ацетилена в воде — 1 объем воды при 20° растворяет 1 объем ацетилена, в то время как этилена только 0,12 объема и менее чем 0,05 объема этана. Это основывается на не очень резко выраженной способности водорода в ацетилене образовывать водородную связь указанная способность находится в связи с замещаемостью этого водорода на металл. [c.261]

    Как известно, в химии для воздействия на ход химических реакций пшроко используется введение в реагирующие молекулы тех или иных заместителей Эти заместители могут, во-первых, совершенно изменить стереохимические свойства реагента, а, во-вторых, привести к перестройке электронной оболочки молекулы В гл 3, где обсуждался характер химической связи, отмечалось, что распределение электронной плотности следует за распределением в пространстве молекулы кулоновского потенциала, создаваемого положительно заряженными ядрами Достаточно ясно, что при введении заместителя этот потенциал в наибольшей степени будет меняться в области пространства, прилегающей к этому заместителю и включающей его Величина изменения будет прямо пропорциональна заряду атома, если замещается один атом, или суммарному заряду замещающей атомной группы При этом надо учитывать экранирующую роль не принимающих участие в образовании химической связи внутренних элекгронов атома-заместителя или атомной группы Понятно поэтому, что в наибольшей степени исходная электронная оболочка будет деформироваться при введении сильно полярного (заряженного) заместителя Значит, именно исследование влияния полярных заместителей может позволить заметить наиболее значимые эффекты и установить как бы верхнюю границу влияния любого заместителя, что и определяет особый интерес к этому вопросу Если полярный заместитель располагается в непосредственной близости от реакционного центра, то он может совершенно радикально изменить его свойства Никаких универсальных закономерностей здесь выявить нельзя и надо отдельно рассматривать каждый конкретный случай Влияние удаленных заместителей более мягкое , и при изучении его можно выявить некоторые общие моменты [c.177]


    К 1940 г. началась новая эпоха генетических исследований. В это время к природе гена стала проявлять интерес группа людей, отличавшихся от классических генетиков как по своему складу, так и по своим устремлениям. Многие из этих новичков были мало знакомы не только с достижениями генетики, накопленными за предыдущие десятилетия, но даже и с биологией вообще. Некоторые из них просто не имели обо всем этом никакого представления. Они по образованию были в основном физиками, и их биологические интересы ограничивались в значительной степени только одной проблемой какова физическая основа генетической информации Конечно, не было ничего нового в том, что физики обратились к решению биологических проблем. Многие выдающиеся открытия в биологии XIX в. были сделаны физиками Луи Пастер, Г. Гельмгольц и сам Мендель были по образованию физиками. Но специфическое обращение физиков к генетике в 40-х годах было вызвано совершенно особой причиной. Как раз в то время, когда в просвещенных кругах перестали исповедовать старомодный витализм (учение о том, что явление жизни в конечном счете можно объяснить только существованием мистической жизненной силы , по своей природе не являющейся ни физической, ни химической), Нильс Бор выдвинул идею, что некоторые биологические явления, возможно, нельзя будет объяснить полностью, исходя лишь из традиционных физических понятий. После того как он сформулировал квантовую теорию атома. Бор развил более общие представления. В соответствии с этим взглядом невозможность описания классической физикой квантового поведения представляет собой лишь эвристический пример того, как столкновение с явлением, кажущимся глубоким парадоксом, приводит со временем к более высокому уровню знания. Бор изложил этот взгляд в речи Свет и жизнь на Международном конгрессе по светолечению в 1932 г. На первый взгляд, —сказал Бор, —это положение может показаться крайне прискорбным, но, как часто случалось в истории науки, когда новые открытия выявляли существенную ограниченность понятий, универсальная применимость которых до того не подвергалась сомнению, это позволило нам расширить свой кругозор и дает большую возможность устанавливать связь между явлениями, которые д о того могли казаться даже противоречащими друг другу . Бор, в час тности, считал, что хорошо бы иметь в виду такую возможность и при исследовании жизни Признание огромной важности существенно [c.31]

    Выше было отмечено, что замещение группами ОН или ЫНг в орго-положении относительно карбонильной группы представляет особый случай образования внутримолекулярной водородной связи, который будет рассмотрен ниже. Однако другие заместители водородов кольца, по-видимому, тоже способны в некоторой степени влиять на частоту колебаний. Соловей и Фрисс [18] опубликовали значения частот карбонильного поглощения всего ряда пара-замещенных ацетофенонов, у которых в твердом состоянии частота поглощения меняется от 1680 (ЫОг-замещение) до 1634 см (МНг-замещение) в зависимости от силы притяжения или отталкивания электронов заместителями. По-видимому, способность ароматического кольца оттягивать электроны из связи С=0 и, таким образом, ослаблять ее в какой-то мере зависит от того, смещаются ли электроны заместителями в сторону кольца или от него. Однако для веществ в твердом состоянии значительную роль могут играть эффекты водородной связи и кристаллической упаковки. Указанные авторы приводят также значения частот поглощения более ограниченного ряда веществ в растворах, и все эти частоты лежат в пределах 1686—1675 см .  [c.165]

    Поскольку атомы активатора могут быть вытеснены в область дислокации, то часть центров свечения локализуется в этой области. Несимметричность окружения и ослабленность связей (уменьшение К в уравнении (I. 56)) может вызвать увеличение стоксова смещения, расширение полосы излучения и повышение вероятности внутреннего тушения. В то же время в некоторых случаях при сегрегации примесей в области дислокаций и межблочных границ наблюдалось усиление люминесценции. Так, у кристаллов Na l-Pb, Мп после отжига увеличивалась интенсивность свечения Мп-центров, расположенных вдоль линейных и поверхностных дефектов [50], что объясняется сближением при сегрегации атомов сенсибилизатора (РЬ +) и активатора (Мп +). Особый случай образования малораст- [c.131]

    Согласно предложенной выше классификации смешанных карбонилов металлов, ясно, что соединения типа А представляют собой всего лишь особый случай двухъядерных карбонилов металлов, таких, как Со2(СО)з и Мп2(С0)ю- Поскольку образование связей металл—металл в значительной степени зависит от величины наполовину заполненных перекрывающихся орбиталей, разумно предположить, что энергия диссоциации связи металл— металл в (С0)5Мп—Йе(С0)5 занимает промежуточное положение по отношению к энергиям диссоциации этих связей в Мп2(С0)ю и Ке2(СО) о- В тех случаях, когда известно, что переходные элементы одной и той же вертикальной триады дают несмешанные двухъ- или трехъядерные карбонилы металлов, нет причины сомневаться в сугцествовании соответствующих смешанных карбонилов, образующихся в результате всех возможных сочетаний одноядерных соединений. Так, соединения типа РеКп2(СО)12 или Ре20з(СО)12 должны быть устойчивыми и могли бы существовать, если бы удалось разработать метод их получения. Возникает, однако, один вопрос. В вертикальных триадах переходных металлов размер наполовину заполненных орбиталей, ответственных за образование связей металл—металл, увеличивается при переходе от верхнего элемента к нижнему. Прямым следствием этого является то, что образование многоядерных карбонилов металлов преимущественно происходит за счет возникновения непосредственных связей металл—металл, а не благодаря появлению мостиковых СО-групп. В связи с этим структура Гез(СО)12 должна быть аналогична структуре Вцз(СО)12 и 08з(СО) 2- В таком случае требуется ответить на вопрос будет ли содержать мостиковые СО-группы еще неизвестный смешанный карбонил РеВ 02(00)12- В литературе до сих пор нет сообщений о рентгенографическом исследовании структуры смешанных карбонилов металлов первого типа. Однако для этой цели можно использовать данные ИК-спектроскопического анализа, позволяющие сделать предварительные выводы о возможной структуре некоторых соединений. [c.205]


    Наиболее важным случаем ассоциативных взаимодействий является водородная связь (Н-связь) [45]. Водородная связь — это связь между функциональной группой А—Н и атомом или группой атомов В той же или другой молекулы особое участие в этой связи принимает атом водорода, уже связанный с А (связь А—Н. .. В). Водородная связь образуется между двумя функиональными группами. Одна из этих групп (АН) выступает как донор протона, другая (В) — как донор электрона. Чаще всего донорами протона при образовании водородной связи являются гидроксильная (ОН), карбоксильная (СООН), амино- ( НН2) и амидо-(ЫН) группы. Водород групп 8—Н и С—Н (например, водород молекулы хлороформа СНС1з) также способен принимать участие в Н-связи, хотя связи с участием этих групп, как правило, слабее. Могут образовываться водородные связи с участием протона, присоединенного к атому галогена (молекулы НР, например). В качестве электронодоноров могут выступать кислород карбонильной, гидроксильной групп или эфирного мостика, азот в аминах и азотосодержащих гетероциклических соединениях, в некоторых случаях — атомы галогенов (атом фтора молекулы НР). [c.285]

    До сих пор в подавляющем больщинстве случаев индольная функция триптофана не защищалась. Обычные методы образования пептидной связи по-зволяют вводить триптофан без особых проблем как в качестве аминокомпонента, так и в качестве карбоксильного компонента. Одиако при неточном соблюдении стехиометрических соотнощений в случае получения азида из гидразида возможно N-иитрозирование индольного кольца. Производные триптофана, защищенные по N- и С-концам, получаются вообще легко. Исключение составляет введение фталильиого остатка [184]. Различные побочные реакции наблюдались при отщеплении защитных групп. Ин-дольное кольцо очень чувствительно к окислителям. Поэтому при некоторых операциях целесообразны применение абсолютных (не содержащих воды) и свободных от пероксидов растворителей и работа без доступа кислорода воздуха. При ацидолитическом отщеплении защитных групп трет-бутильного типа случается Ы "-тре/и-бутилирование [185]. Наряду с N-алкилированием может происходить также и С-алкилирование индольной группы [186]. При удалении Nps-группы с помощью хлороводорода в спирте получается S-(2-нитрофенил)тиоиндольное производное (1). Эту побочную реакцию можно в значительной степени подавить добавлением избытка метилиндола (10—20 экв.) [187]. [c.130]

    Итак, коллоидные системы возникают при особых условиях кристаллизации. Коллоидные частицы являются ультрамикрокристаллами. Однако в рассуждениях Веймарна есть один весьма существенный недостаток. Он, как и Оствальд, сводит все свойства коллоидов только к размеру частиц, к степени их дисперсности без учета тех качеств, которые связаны с гетерогенностью коллоидных систем. Возьмем случай с образованием золя берлинской лазури. Несомненно, что это процесс кристаллизации. Также несомненно, что здесь образуются кристаллические зародыши коллоидной степени дисперсности. Но они с неизбежностью должны коагулировать, так как являются носителями свободной поверхностной энергии. Следовательно, для получения стойкого золя недостаточно получения частиц определенной степени дисперсности. Необходимы такие условия кристаллизации, при которых на поверхности частиц возникал бы одноименный электрический заряд. Впоследствии и сам Веймарн был вынужден признать это. Для этой цели нужно брать один из реагентов, образующих коллоид, в некотором избытке. [c.266]

    Растворам (61—72) было уделено значительное внимание при получении смешанных мембран двух типов мембран, в которых оба полимера остаются в конечном продукте, и тех, в которых один полимер играет вспомогательную роль в образовании взаимопроникающей полимерной сетки и выделяется выщелачиванием перед использованием (табл. 5.10). Некоторые менее совместимые компоненты могут выполнять функцию ускорителей гелеобразования. Введение, например, мультиполимера найлона 6,6 6,10 6 в растворы найлона 6,6 в 90%-й муравьиной кислоте переводит раствор в гель на начальной стадии удаления растворителя. Это обусловливает получение высокопористых мембран без барьерного слоя. Полное удаление растворителя из растворов гомополимера найлона 6,6 приводит к образованию мембран с барьерным слоем и низкой пористостью. Этот особый смешанный раствор — единственный случай, известный автору, в котором растворяющая система, не содержащая нерастворяющего порообразователя, может быть полностью высушена для получения асимметричной мембраны с барьерным слоем и высокой пористостью. Полное испарение таких растворов обычно приводит к образованию плотных мембран или мембран с барьерным слоем и низкой пористостью. В этом случае межмолекулярные водородные связи способствуют образо- [c.223]


Смотреть страницы где упоминается термин Некоторые особые случаи образования С—Mg-связи: [c.196]    [c.112]    [c.14]   
Смотреть главы в:

Методы элементоорганической химии -> Некоторые особые случаи образования С—Mg-связи

Методы элементоорганической химии Магний бериллий кальций стронций барий -> Некоторые особые случаи образования С—Mg-связи




ПОИСК







© 2025 chem21.info Реклама на сайте