Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции и ход анализа катионов I группы

    Лабораторная работа 2. Реакции и ход анализа катионов группы соляной кислоты (вторая аналитическая группа катионов) [c.93]

    Пятая аналитическая группа по классификации данного метода идентична первой аналитической группе аммиачно-фосфатного метода анализа катионов. Общие реакции Ыа" -, К" -, NH4 -ионов см. в гл. I, 1, их индивидуальные реакции — в гл. I, 2, 3, 4. [c.129]


    Реакции и ход анализа катионов / группы 18. Общая характеристика катионов I группы [c.93]

    РЕАКЦИИ И АНАЛИЗ КАТИОНОВ ПЯТОЙ И ШЕСТОЙ АНАЛИТИЧЕСКИХ ГРУПП (Со d u Hg К Na+. NH ) [c.113]

    Реакции а ход анализа катионов /// группы 49. Общая характеристика катионов III группы [c.188]

    Реакции и ход анализа катионов /// группы [c.193]

    Классификация методов кулонометрии по типу реакции. В кулонометрии используют значительно больше электрохимических реакций, чем в электровесовом анализе. Одна группа определений основана на восстановлении катионов металлов и выделении последних в свободном состоянии  [c.221]

    РЕАКЦИИ И АНАЛИЗ КАТИОНОВ ПЕРВОЙ АНАЛИТИЧЕСКОЙ ГРУППЫ  [c.106]

    Гидроокиси меди и кадмия и окись серебра растворяются в избытке раствора аммиака с образованием аммиакатов [Си(ЫНз)4] — интенсивного синего цвета, остальные — бесцветны. Реакции катионов IV аналитической группы с N1 40 широко используют в систематическом ходе анализа катионов. Например а) для открытия ионов меди по характерному синему окрашиванию комплексных ионов [ u(NHз)4) б) для открытия ионов висмута (по образованию белого осадка основной соли висмута) в присутствии кадмия и меди, гидроокиси которых растворимы в избытке NH40H в) для разделения хлоридов серебра и закисной ртути, осаждаемых совместно соляной кислотой, с последующим растворением хлорида серебра в NH40H. [c.312]

    РЕАКЦИИ И АНАЛИЗ КАТИОНОВ ПЯТОЙ АНАЛИТИЧЕСКОЙ ГРУППЫ (N3% К N4 ) [c.129]

    РЕАКЦИИ И АНАЛИЗ КАТИОНОВ ПЕРВОЙ АНАЛИТИЧЕСКОЙ ГРУППЫ (Ag [Нйа] РЬ2+) [c.143]

    Перед проведением хроматографического анализа катионов по аналитическим группам [79] необходимо познакомиться с некоторыми реакциями по хроматографическому обнаружению ионов на окиси алюминия. Исследуемый раствор вносят в колонку с сорбентом и полученную первичную хроматограмму после промывания водой проявляют специфическим реагентом. Сорбированные ионы, находящиеся в различных зонах хроматограммы, вступают во взаимодействие с проявителем и дают окрашенные химические соединения. Образуется цветная хроматограмма, обнаруживающая ионы, содержащиеся в исследуемом растворе, по характерной окраске зон для каждого иона в отдельности. [c.183]

    Реакции анионов различных карбоновых кислот с катионами мо-ди(П), железа(1П), кобальта(П) и т. д. с образованием окрашенных осадков карбоксилатных комплексов различного состава являются общими групповыми реакциями на карбоксилатную группу и широко используются в фармацевтическом анализе. Проведению реакции мешают фенолы. [c.477]


    Предложены также систематические методы анализа катионов, в которых разделение ионов иа группы осуществляется не с помощью реакций осаждения, а путем экстрагирования или хроматографирования. [c.21]

    Реакции образования малорастворимых гидроокисей широко используют в анализе катионов П1 аналитической группы. [c.250]

    Изучив реакции и ход анализа каждой группы в отдельности, приступают к анализу смеси ионов обеих групп. Таким же путем изучают катионы остальных групп. [c.57]

    В слабокислой среде в присутствии комплексона только серебро и одновалентный таллий осаждаются иодидом калия, так как остальные катионы, как, например, свинец, висмут и медь, прочно связаны в комплекс и с иодидом не реагируют. В нейтральной среде серебро образует комплексное соединение Ag2Y , как было установлено амперометрическим титрованием его комплексоном Н14], и не осаждается иодидом. 1одробным исследованием этой реакции показано, что только в нейтральной среде можно потенциометрически определить серебро -при помощи серебряного индикаторного электрода. В кислых растворах, в которых происходит выделение иодида серебра, результаты всегда получаются пониженными. Авторы рекомендуют следующий ход определения. К раствору, содержащему не менее 1 мг серебра, прибавляют требуемое количество комплексона и 5 капель бромтимолового синего. После нейтрализации 0,2 н. раствором едкого натра (сине-зеленая окраска) раствор разбавляют до 50—100 мл и титруют с применением серебряного электрода 0,1 н. раствором иодида калия из микробюретки с делениями на 0,05 мл. Присутствующий в небольшом избытке комплексон на определение не влияет. Таким путем можно определить серебро в присутствии свинца, меди, висмута, кадмия даже и тогда, когда они присутствуют в 300-кратном избытке. Пятивалентный мышьяк и трехвалентная сурьма (связанные в растворе винной кислотой), не влияют на определение. Определению не мешает также таллий, если присутствует в не слишком большом количестве (Ag Т1=1 10). Присутствие двухвалентной ртути и катионов группы бария делает определение невозможным. Согласно авторам, метод можно с хорошими результатами применять для анализа различных сплавов с серебром. После их растворения в азотной кислоте к раствору прибавляют комплексон и винную кислоту (в присутствии сурьмы), нейтрализуют едким натром и титруют описанным способом. Аналогично поступают при анализе [c.139]

    Реакции осаждения. Сероводород имеет особое значение в химическом анализе. Он является важнейшим групповым реактивом для катионов. Его различное действие на катионы в зависимости от pH раствора лежит в основе систематического анализа катионов и разделения их на аналитические группы [76, 1540]. [c.19]

    Исторически классический качественный химический анализ развивался как анализ неорганических катионов и анионов (и лишь самых простейших органических анионов, гаких, например, как ацетат-ион СНзСОО" и оксалат-ион СгО] ). Качественный анализ органичесыгх соединений, основанный преимущественно на открытии этих веществ по реакциям на функциональные группы, развивался параллельно со становлением органической химии и нашел особенно широкое применение в фармацевтическом анализе, поскольку очень многие лекарственные препараты включают органические вещества. [c.34]

    Разделение катионов I и II аналитических групп. 15—25 капель анализируемого раствора помещают в коническую пробирку и добавляют несколько капель раствора аммиака до щелочной реакции, а затем по каплям раствор NH4 I до получения раствора с рН =9, Смесь нагревают на водяной бане до 60 — 70°С, добавляют к ней 10—12 капель раствора (NH4)2 03, хорошо перемешивают и полученный осадок с раствором выдерживают на водяной бане в течение 1—2 мин при той же температуре. Осадок центрифугируют, а к раствору, не сливая его с осадка, добавляют одну каплю раствора (NH4).j 0 , для определения полноты осаждения карбонатов второй группы. Появление мути означает, что полнота осаждения не достигнута в этом случае к раствору добавляют 2—3 капли раствора (ЫН4)2СОз, вновь выдерживают на водяной бане и повторно центрифугируют. После достижения полноты осаждения центрифугат осторожно сливают с осадка в отдельную пробирку и сохраняют для анализа катионов первой группы. [c.253]

    РЕАКЦИИ И АНАЛИЗ КАТИОНОВ ТРЕТЬЕЙ а5Ш1ИТИЧЕСК0Й группы (Ва2% 8г2+, Са +) [c.123]

    Пятая аналитическая группа катионов по классификации этого метода идентична первой аналитической группе катионов аммиачнофосфатного метода анализа. Общие реакции катионов пятой аналитической группы представлены в гл. I, 1, их индивидуальные реакции — в гл. I, 2, 3, 4. Систематический ход анализа катионов пятой аналитической группы см. гл. I, 7. [c.140]

    Пользуясь сероводородом как осадителем, можно выделить в виде сульфидов металлов целую группу катионов, сходных по их реакциям с сероводородом. Поэтому сероводород называют групповым реагентом. Групповыми реагентами являются также карбонат аммония, сульфид аммония, сульфид натрия. Групповым называют такой реагент, который осаждает апределенные ионы, не осаждая при этом других ионов, присутствующих в том же растворе, и наоборот, переводит в раствор определенные ионы, находящиеся в осадке, не затрагивая при этом других ионов осадка, например, карбонат аммония осаждает катионы кальция, стронция, бария, но не осаждает катионов щелочных металлов. Раствор сульфида натрия растворяет сульфиды мышьяка, сурьмы, олова, ртути и не растворяет сульфидов меди, кадмия, висмута, свинца. Эти особенности групповых реагентов наиболее полно использованы при разработке систематического хода анализа катионов по сероводородному методу анализа, в котором все катионы подразделяют на пять групп (табл. 2). [c.11]


    Большую серию экспериментальных исследований по анализу неорганических ионов методом тонкослойной хроматографии провел X. Зайлер [111]. Им выполнен анализ катионов, предварительно разделенных на группы, и анализ анионов. Он установил, что в условиях тонкослойной хроматографии неорганических ионов нельзя пользоваться величиной Rf для идентификации ионов, так как эта величина не является постоянной, как это имеет место в бумажной хроматографии. Величина Rf зависит не только от свойств носителя и состава подвижного раствора, но и от присутствия сопутствующих ионов. Поэтому X. Зайлер вынужден ограничиться только лишь указанием на постоянную последовательность высот поднятия ионов на тонкослойной хроматограмме, полученной по восходящему методу. При обработке хроматограмм можно точно идентифицировать отдельные ионы по известным реакциям обнаружения. [c.185]

    При систематическом анализе катионов вначале с использованием групповых реагентов из смеси выделяют rpymn.i катионов, после чего внутри каждой группы с помощью тех или иных реакций разделяют ц открывают индивидуальные катионы. [c.289]

    В предыдущих главах описаны методы качественного химического анализа катионов и анионов, основанные на использовании химических аналитических реакций. Помимо этих методов в качественном анализе, в том числе и в фармакопейном анализе, применяются различные физико-химические и физические методы, обычно называемые не совсем точно инструментальными методами анализа. Наиболее широкое распространение по гучили три группы таких методов [c.515]

    Специфичность реакции можно повысить путем маскировки сопутствующих ионов. Маскировка заключается в связывании мешающих ионов в достаточно прочные комплексы добавлением в раствор соответствующих веществ. Например, медь и свинец можно маскировать, переведя их в тартраты в таком растворе можно обнаружить те ионы, которые не образуют тартратные комплексы. Маскировка мешающих ионов часто используется и имеет большое практическое значение. Например, если в ходе анализа катионов 4-й группы к раствору, содержащему медь, кадмий, висмут, свинец, прибавить глицерин, с которым все катионы, кроме кадмия, образуют прочные комплексы, не осаждаемые щелочами, а затем подействовать гидроокисью натрия, то кадмий оседает в виде гидроокиси, а остальные катионы останутся в растЕоре и могут быть затем обнаружены. Ион Ре " мешает обнаружению Со + в виде синего роданидного комплекса, так как образует темно-красный комплекс ( 81, 82), что мешает определению кобальта. Если же железо предварительно перевести во фторидный комплекс 1РеРйР или [РеРа]-, добавляя фторид натрия, то оно не помешает определению кобальта, так как комплекс железа с фторид-ионами значительно устойчивее, чем железороданидный комплекс. Кадмий можно осадить в виде желтого сульфида в присутствии меди (И), связывая медь в цианидный комплекс [Си (СЫ) , более прочный, чем цианид-ный комплекс кадмия. /Снест для комплекса кадмия 1,4-10" , а для комплекса меди (I) 5-10 , т. е. значительно меньше. [c.100]

    Дробный анализ катионов пятой группы. Обнаружение Fe +. В отдельной порции раствора обнаруживают Fe + реакцией с ферроцианидом калия или с а, а"-дипири-дилом. [c.60]

    При анализе катионов III группы широко применяют окислительно-восстановительные реакции, например МПО4-, СЮ4 СГ2О7 -, Fe -ионы, являясь окислителями, восстанавливаются до ионов с низшей степенью окисления. В свою очередь, указанные ионы низших степеней окисления могут быть переведены в высшие степени окисления. [c.149]

    При анализе причин повышения антихолинэстеразной активности необходимо иметь в виду, что сама по себе подвижность Р—8-свЯзи, по-видимому, мало меняется при изменении структуры радикала. Как следует из данных табл. 33, константа скорости щелочного гидролиза в этом ряду соединений почти не изменяется. Это значит, что распределение плотности электронов в молекуле, подвергающейся нуклеофильной атаке гидроксила при щелочном гидролизе, у рассматриваемых соединений различается несущественно. Об этом же говорят величины энергии активации для реакции ингибирования холинэстераз. Таким образом, энергетический барьер нуклеофильного замещения, определяющийся в основном распределением зарядов в реагирующих молекулах, по-видимому, одинаков для всех четырех соединений. Из данных таблицы следует, что увеличение константы скорости фосфорилирования холинэстераз есть следствие повышения предэкспонента RZ, отражающего возрастание пространственного соответствия молекулы ингибитора структуре активной поверхности. При появлении в молекуле ингибитора тетраэдрической структуры с тремя метильными группами (ХХХУП ), близкой по строению катионной группе ацетилхолина XXXИ, повышается способность [c.233]


Смотреть страницы где упоминается термин Реакции и ход анализа катионов I группы: [c.474]    [c.180]    [c.440]   
Смотреть главы в:

Качественный анализ 1960 -> Реакции и ход анализа катионов I группы

Курс качественного химического полумикроанализа 1962 -> Реакции и ход анализа катионов I группы

Курс качественного химического полумикроанализа 1973 -> Реакции и ход анализа катионов I группы




ПОИСК





Смотрите так же термины и статьи:

Анализ катионов

Анализ реакций

Реакции и анализ катионов второй аналитической группы (Ва

Реакции и анализ катионов первой аналитической группы (Ag, Hg,j2 РЬ

Реакции и анализ катионов пятой аналитической группы

Реакции и анализ катионов пятой и шестой аналитических групп (Со

Реакции и анализ катионов третьей аналитической группы (Ва

Реакции и ход анализа катионов II группы Общая характеристика II группы

Реакции и ход анализа катионов i группы Общая характеристика катионов I группы

Реакции и ход анализа катионов второй аналитической группы jqj Общая характеристика катионов второй группы

Реакции и ход анализа катионов второй группы (Ва2 , Са

Реакции и ход анализа катионов первой группы

Реакции и ход анализа катионов третьей группы (А1 , Сг

Реакции и ход анализа катионов четвертой аналитической группы

Реакции и ход анализа катионов четвертой группы

Реакции катионов 3-й группы и схема анализа смеси катионов 1—3-й групп

Реакции н ход анализа катионов III группы Общая характеристика III группы. Подразделение на подгруппы

Реакций и анализ катионов пятой аналитической группы (Na, К, Систематический ход анализа смеси катионов пяти аналитических групп

Характерные реакции и систематический ход анализа катионов третьей аналитической группы

Характерные реакции и систематический ход анализа смеси катионов второй аналитической группы

Характерные реакции и систематический ход анализа смеси катионов четвертой аналитической группы

группа реакции

группы реакции с катионами II группы



© 2025 chem21.info Реклама на сайте