Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь в гидратах

    Водородная связь может приводить к образованию новых химических соединений. Так, при охлаждении водного раствора аммиака можно выделить, кристаллы соединения состава НзМ- НзО (гидрат аммиака). Здесь молекулы воды и аммиака объединены за счет водородных связей (с. 394). [c.93]

    Однако данные по рефракции и распределению дейтерия между водородсодержащими ионами и водой подтверждают существование ионов Н3О+ в воде. В полярных растворителях происходит сольватация его. Определение числа гидратации различными экспериментальными методами дает значение от 2-х до 5-ти. Заслуживает внимания представление о том, что протон преимущественно находится в форме тетрагидрата, который можно рассматривать как гидрат иона оксония Нз0(Н20) , образующийся посредством водородных связей с тремя молекулами воды  [c.592]


    Опреснение воды с помощью гидратных процессов. Гидраты — нестехиометрические соединения (водные клатраты), в которых молекулы удерживаются метастабильной, построенной из молекул воды, кристаллической решеткой хозяина с помощью водородных связей [44]. Очевидно, что такое включение возможно лишь при соответствии размеров полости в кристаллах молекул хозяев размерам молекул гостей . Считается, что важную роль в [c.11]

    При растворении в воде аммиак присоединяет молекулу воды за счет водородной связи с образованием гидрата аммиака КНз Н2О, который в растворе играет роль слабого основания  [c.135]

    В структуре гидратов газов наряду с водородными связями существенную роль играют связи ван-дер-ваальсовского типа, которые возникают между молекулами газов, в том числе одноатомными молекулами аргона, неона и ксенона, и молекулами воды. Гидраты газов имеют кубическую структуру двух типов тип I — элементарная ячейка состоит из 46 молекул воды, 6 больших и 2 малых полостей типа II — в элементарной ячейке находится 136 молекул воды, 8 больших и 16 малых полостей. Таким образом, в структуре тех и других гидратов в образовании полостей принимает участие значительно большее число молекул, чем в структуре льда. Поэтому полости получаются сравнительно большие  [c.26]

    Водородная связь может приводить к образованию новых химических соединений. Так, при охлаждении аммиачного водного раствора можно выделить кристаллы соединения состава HgN-HaO (гидрат ам- [c.108]

    Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов. Иначе говоря, в результате диссоциации образуются не свободные ионы, а соединения ионов с молекулами растворителя. В общем случае любого растворителя эти соединения называются сольватами ионов. Но в уравнениях диссоциации обычно пишут формулы ионов, а не их гидратов или сольватов, тем более что число молекул растворителя, связанных с ионами, изменяется в зависимости от концентрации раствора и других условий. Однако, поскольку всегда образуется моногидрат иона водорода — ион гидроксония Н3О+, рекомендуется все же указывать его формулу, а не изолированного иона водорода. Тем более, что с образованием и разрушением иона гидроксония связана исключительно высокая подвижность иона водорода в водных средах, а значит, и его влияние на разнообразные химические реакции. Как нам известно из главы 4, для воды характерен некоторый дальний порядок в жидком состоянии за счет наличия между ее молекулами водородных связей. Ион гидроксония из-за своего более поляризованного, чем в молекуле воды, атома водорода участвует в образовании водородной связи, присоединяясь к одной из молекул воды  [c.235]


    При увеличении температуры гидратация ионов усиливается и координационное число гидратов раствора растет, так как направленные водородные связи разрушаются интенсивнее, чем менее направленные (ион-дипольное взаимодействие). [c.86]

    Одним из клатратных соединений является газированный лед. Опыт показывает, что при охлаждении воды, насыщенный каким-либо газом под давлением, образуется лед, содержащий в своей кристаллической решетке молекулы газа. При этом молекулы Н2О посредством водородных связей образуют многогранники, полости внутри которых достаточно велики, чтобы молекула газа могла в них находиться почти свободно. Выйти из многогранника или войти в уже образовавшийся газо-гидрат молекула не может (рис, 5.21). Поэтому, несмотря на летучесть газов, эти соединения являются относительно устойчивыми. Молекулами-гостьями в гидратах могут быть углекислый газ, аргон, криптон, ксенон, метан, этан, этилен, пропан, циклопропан и др. Гидраты экономичны в смысле хранения газа. В 1 м газового гидрата около 200 м метана. Добыть газ из гидрата очень легко нагреванием. Существует предположение, что большие запасы природного газа хранятся в недрах Земли в форме газогидратов. [c.149]

    Л. Полинг предложил модель структуры воды, основанную на аналогии со структурой гидратов газов. Напомним, что эти гидраты представляют собой клатратные соединения молекула газа, например метана, заключена в полость объемного многогранника, образованного молекулами НаО. Полинг считает, что структура воды соответствует структуре гидрата газа, в которой молекулы газа заменены на молекулы НаО. Вода, согласно этой модели, представляет собой клатратный гидрат. Молекулы НаО, заключенные в клатратные многогранники, не образуют водородных связей с другими молекулами. Они могут свободно вращаться внутри многогранника. [c.233]

    Гидраты представляют собой кристаллические соединения — включения (клатраты), которые могут существовать в стабильном состоянии, не являясь химическими соединениями. По существу гидраты — это твердые растворы, где растворителем являются молекулы воды, образующие с помощью водородных связей объемный каркас гидратов. В полостях этого каркаса находятся молекулы газов, способных образовывать гидраты (метан, этан, пропан, изобутан, азот, сероводород, диоксид углерода, аргон). Углеводороды, молекулы которых больше молекулы изобутана, не могут проникать внутрь каркаса, а поэтому не образуют гидратов. Нормальный бутан не образует гидратов, но его молекулы способны проникать через решетку гидратного каркаса вместе с молекулами газов меньших размеров, что приводит к изменению равновесного давления над гидратом. [c.115]

    Низшие Г. ( j- ,) смешиваются с водой, спиртами, альдегидами, кетонами, к-тами, аминами во всех соотношениях. Г., особенно полигликоли, хорошо растворяют синтетич. смолы, лаки, краски, эфирные масла, каучуки. Ароматич. углеводороды растворяются в Г. ограниченно, предельные алифатич. углеводороды не растворяются. Благодаря водородным связям Г. образуют ассоциаты с водой (гидраты), аминами и др. При образовании гидратов значительно понижается т-ра замерзания водиых р-ров Г. На этом св-вс основано применение их как антифризов. [c.579]

    Здесь KfA — собственная сжимаемость молекулы растворенного вещества (для низкомолекулярных соединений /См определяется сжимаемостью ковалентных связей и вандерваальсо-вых радиусов составляющих ее атомов эта сжимаемость мала и обычно ею пренебрегают [145—147, 164]) A/ i — изменение сжимаемости воды в гидратной оболочке К, 2 — сжимаемость контактов между молекулой растворенного вещества и окружающими молекулами воды. Смысл вклада Ki,2 можно пояснить на примере гидрофобных молекул, не образующих водородных связей с молекулами воды. В водном растворе гидрофобная молекула находится в полости, образованной сеткой водородно-связанных молекул воды. Так организованы клат-ратные гидраты [165], такие структуры получаются в машинных экспериментах, выполненных методами Монте-Карло и молекулярной динамики [166, 167]. Объем полости, занимаемой молекулой растворенного вещества, должен превышать ее ван- [c.50]

    В водных растворах неионогенные вещества образуют гидраты вследствие появления водородной связи между водородными атомами молекул воды и эфирными кислородными атомами полиэтиленглико-левой цепи  [c.86]

    Раствор — динамическая система, в которой в различной степени диссоциирующие при данной температуре сольваты находятся в подвижном равновесии со своими продуктами диссоциации. Между сложными частицами раствора происходит постоянный обмен. При повышенных концентрациях понятия растворитель и растворенное вещество становятся равноправными [94, стр. 6]. Сольваты (гидраты) образуются за счет диполь-дипольного, донорно-акцепторного взаимодействия, за счет водородных связей и дисперсионного взаимодействия. Ионы особенно склонны к гидратации. Сольватация (гидратация) уменьшается при нагревании. [c.151]


    Как указывалось выше, неионогенные вещества при растворении в воде образуют гидраты вследствие проявления водородной связи между молекулами воды и эфирными кислородными атомами иолиэти-ленгликолевого остатка. При повышении температуры водного раствора, в котором растворено неионогенное вещество, водородная [c.117]

    Ионо-сольваты (ионо-гидраты). Сказанное выше показывает, что при растворении происходит комплексообразование, в результате чего образуются сольватированные комплексы — в водных растворах гидратированные аквокомплексы. В катионных аквокомплексах центральные ионы связаны с молекулами воды за счет донорно-акцепторного взаимодействия, а в анионных аквокомплексах за счет водородной связи  [c.161]

    При низкой температуре из раствора аммиака может быть выделен кристаллогидрат NHз H20, плавящийся при -79°С. Известен также кристаллогидрат состава 2NHз-НаО. В этих гидратах молекулы воды и аммиака соединены между собой водородными связями. [c.429]

    В образовании сольватов химические силы не участвуют. Главную роль здесь играют межмолекулярные, ионо-дипольные силы и водородная связь. Далее, сольваты (или гидраты) нельзя рассматривать как химические соединения еще и потому, что состав их непостоянен он изменяется в зависимости от концентрации раствора и температуры. Так, число молекул растворителя, связанных с молекулой растворенного вещества, с повышением температуры убывает. Уменьшение концентрации в общем влияет в обратном направлении. [c.159]

    Великий русский химик Д. И. Менделеев создал химическую торию растворов, которую он обосновал многочисленными экспериментальными данными, изложенными в его книге Исследования водных растворов по их удельному весу , вышедшей в 1887 г. Растворы суть химические соединения, определяемые силами, действующими между растворителем и растворенным веществом ,— писал Менделеев в этой книге. Мы теперь знаем природу этих сил. Сольваты (гидраты) образуются за счет донорно-акцепторного, диполь-дипольного взаимодействий, за счет водородных связей, а также дисперсионного взаимодействия (в случае растворов родственных веществ, например бензола и толуола). Особенно склонны к гидратации ионы. Ионы присоединяют полярные молекулы воды, в результате образуются гидратированные ионы поэтому, например, в растворе ион меди (П) голубой, в безводном сульфате меди бесцветный. Во многих случаях такие соединения непрочны и легко разлагаются при выделении их в свободном виде. Однако в ряде случаев образуются прочные соединения, которые можно легко выделить из раствора путем кристаллизации. Из раствора выпадают кристаллы, содержащие молекулы воды. [c.145]

    Великий русский химик Д. И. Менделеев создал химическую теорию растворов, которую он обосновал многочисленными экспериментальными данными, изложенными в его книге Исследования водных растворов по их удельному весу , вышедшей в 1887 г. Растворы суть химические соединения, определяемые силами, действующими между растворителем и растворенным веществом ,— писал он в этой книге. Теперь известна природа этих сил. Сольваты (гидраты) образуются за счет донорно-акцепторного, ион-дипольного взаимодействий, за счет водородных связей, а также дисперсионного взаимодействия (в случае растворов родственных веществ, например бензола и толуола). [c.104]

    Аргоноиды, простые углеводороды и многие другие вещества образуют кристаллические гидраты так, ксенон образует гидрат Хе-5 4 Н2О, устойчивый примерно при 2°С и парциальном давлении ксенона I атм метан образует аналогичный гидрат СН4-5 /4 Н2О. Рентгеноскопические исследования показали, что эти кристаллы имеют структуру, в которой молекулы воды образуют благодаря водородным связям решетку, напоминающую решетку льда в ней каждая молекула воды окружена четырьмя другими молекулами, расположенными в вершинах тетраэдра на расстоянии 276 пм, но с более открытым расположением молекул, что обусловливает образование полостей (в форме пентагональных додекаэдров или других многогранников с пентаго-нальными или гексагональными гранями), достаточно больших, чтобы в них могли помещаться атомы аргоноидов или другие молекулы. Кристаллы такого типа называют клатратными кристаллами. [c.257]

    Способность молекул В. образовывать трехмерные сетки водородных связей позволяет ей давать с инертными газами, углеводородами, СО2, С1,, (СН2)20, H I3 и многими др, в-вами т. наз. газовые гидраты. [c.396]

    Г. без разрушения молекул воды приводит к гидратам. Обусловлена электростатич. и ван-дер-ваальсовым взаимодействиями, координационными и нногда водородными связями. Г. в растворе-частный случай сольватации. [c.550]

    С помощью Д с с изучают процессы, происходящие в равновесных системах, преим однофазных жидких или твердых Так, в жидких р-рах осн процессы распад ассоциатов, образованных однотипными молекулами (напр, молекулами спирта, между к-рыми имеется водородная связь), образование сольватов (гидратов), хим р-ции обмена, напр этерификация в смесях спиртов с орг к-тами, образование ионных пар, напр [RjNH" ] [R OO ] при взаимод третичных аминов с карбоновыми к-тами, распад ионных пар В металлич сплавах с помощью Д с с изучают образование интерметаллич соед, определяют границы существования твердых р-ров [c.32]

    Между молекулами гостя и хозяина может не быть никаких взаимод., кроме ван-дер-ваальсовых (как, напр., в газовых гидратах), но часто между гостями и хозяином, кроме ван-дер-ваальсова взаимод., имеются слабые связи типа водородных (напр., клатратная молекула гексагидрата уротропина связана с каркасом К. тремя водородными связями). Соед. с координац. связью между гостем и хозяином, напр, комплексы краун-эфиров и криптандов, наз. клатратокомплексами. Соотношение между кол-вами молекул гостей и хозяев в обшем случае нецелочнсленное (напр., Вг2 -8,6 Н2О). Решетчатые К. существуют только в кристаллич. состоянии, молекулярные-также и в р-ре. [c.403]

    Известны восемь гидратов НСЮ (табл. 1). Моногидрат НзО" СЮ -ионный П. А//2бр 382,0 кДж/моль в кристаллич. структуре остальных гидоатов присутствуют гидратир, протоны НдОз, Н Оз, Н,о/ входящие в состав кристаллогидратов молекулы воды связаны с ионами СЮ водородными связями. При —25°С моногидрат переходит в моноклинную модификацию (пространств, группа Р211п). Азеотроп с водой имеет т. кип 203 °С (0,1 МПа) и содержит 72,4% нею, пар над р-рами выше этой концентрации обогащен НСЮ, ниже-водой. [c.498]

    Неноногениые ПАВ - зти соединения, которые растиорягется в воде, не ионизируясь. Растворимость неноногенных ПЛВ в воде обусловливается наличием в них функциональных групп. Как правило, они образуют гидраты в водном растворе вследствие возникновения водородных связей между молекулами вода и атомами кислорода полизтиленгликолевой части молекулы ПЛВ. [c.13]


Смотреть страницы где упоминается термин Водородная связь в гидратах: [c.198]    [c.441]    [c.307]    [c.67]    [c.118]    [c.81]    [c.60]    [c.395]    [c.360]    [c.119]    [c.183]    [c.211]    [c.273]    [c.131]    [c.162]    [c.162]    [c.551]    [c.587]    [c.177]    [c.54]   
Структурная неорганическая химия Том3 (1988) -- [ c.2 , c.392 , c.432 ]

Структурная неорганическая химия Т3 (1988) -- [ c.2 , c.392 , c.432 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Гидраты

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте