Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная связь ион-дипольная

    В ионе аммония каждый атом водорода связан с атомом азота общей электронной парой, одна из которых реализована по донор-но-акцепторному механизму. Важно отметить, что связи Н—N. образованные по различным механизмам, никаких различий в свойствах (например, в энергии связи, дипольном моменте связей и т. д.) не имеют, т. е. независимо от механизма образования возникающие ковалентные связи равноценны. Указанное явление обусловлено тем, что в момент образования связи орбитали 2в- и 2р-электронов атома азота изменяют свою форму. В итоге возникают четыре совершенно одинаковые по форме орбитали. Поскольку форма этих новых орбиталей есть нечто среднее между формами 8- и р-орбиталей, то эти новые орбитали принято называть гибридными, а процесс их возникновения — гибридизацией атомных орбиталей (б).  [c.36]


    Твердые вещества, при растворении которых в воде и других полярных растворителях, образуются электролиты, являются, как правило, кристаллическими телами, имеющими ионные или близкие к ионным решетки. В чисто ионных решетках не существует молекул вещества, и кристалл любой величины можно рассматривать как одну огромную молекулу. Ионы противоположных знаков, составляющие такую решетку, связаны между собой большими электростатическими силами. При переходе ионов Е раствор, энергии электростатического взаимодействия ионов в решетке противопоставляется энергия взаимодействия ионов с дипольными молекулами растворителя, который втягивает ионы решетки в раствор. При этом ионы окружаются молекулами растворителя, образующими вокруг иона сольватную (в частном случае — гидратную) оболочку. Энергия взаимодействия ионов различных знаков, перешедших в раствор и окруженных сольватными оболочками, уменьшается по сравнению с энергией их взаимодействия в решетке (при равных расстояниях г между ионами) обратно пропорционально диэлектрической проницаемости растворителя О в соответствии с законом Кулона  [c.391]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]

    Рассматривая полярность органических соединений, следует исходить из положения углерода в периодической системе элементов. Чем ближе расположены к центру периода элементы, тем они труднее теряют или приобретают электроны. Этим объясняется, что углерод, находящийся в 4-й группе, не образует ионных связей, и его соединения имеют ковалентные связи. Но эти связи более или менее полярны. Однако в целом молекула органического соединения может быть неполярна, что обусловливается возможностью симметричного расположения атомов или групп атомов по отношению к углероду (дипольные моменты компенсируются). [c.55]


    Ионы за счет ион-дипольного взаимодействия способны притягивать полярные молекулы других веществ. Поэтому ионные кристаллы хорошо растворимы в полярных жидкостях, молекулы которых вытягивают из кристалла ионы и, окружая их, нарушают ионные связи. Подробнее механизм растворения рассматривается в гл. VII. Растворимость ионных кристаллов зависит от полярности растворителя (табл. 13), характеристикой которой может быть его [c.98]

    Общие химические свойства кремния и германия определяются положением этих элементов в таблице Менделеева. Кремний и германий находятся в четвертой группе таблицы, располагаясь соответственно в третьем и четвертом периодах. Во всех своих соединениях кремний и германий выступают как четырех- или двухвалентные элементы. При умеренных температурах (до 700 " К) и в особенности во влажных средах они образуют, как правило, четьЕрехвалентные соединения. Наоборот, нри высоких температурах (порядка 1300 " К) и в сухой атмосфере более типичными являются двухвалентные соединения рассматриваемых элементов. Химические связи в соединениях кремния и германия с элементами крайних групп таблицы Менделеева — полярные и обладают существенным дипольным моментом. Типичным для таких соединений является их взаимодействие с полярными молекулами других веществ и, в первую очередь, с молекулами воды. Соединения с чисто ионной связью для кремния и германия не известны. Следует, однако, иметь в виду, что некоторые полярные соединения рассматриваемых элементов могут частично диссоциировать на соответствующие положительные и отрицательные ионы. [c.92]

    В общем случае следует отличать полярность молекулы в целом от полярности отдельных содержащихся в пей связей. Для двухатомных молекул эти два понятия совпадают. Анализируя имеющийся опытный материал, можно установить, что двухатомные молекулы, состоящие из одинаковых атомов в соответствии с вполне симметричным положением связывающей их электронной пары, не обладают полярностью, и для них [х = 0. Двухатомные молекулы, состоящие из неодинаковых атомов, в большинстве случаев являются в той илн иной степени полярными. В общем, чем больше различие в электроотрицательности элементов и чем, следовательно, более асимметричным является распределение электронной пары, связывающей данные атомы, тем больше будет и полярность связи. Наибольшей величины, при прочих равных условиях, она должна достигать при чисто ионной связи. Впрочем, строго говоря, между асимметрией в распределении электронной пары и дипольным моментом однозначной зависимости может и не быть, так как асимметрия эта определяет собой только величину заряда атомов в данной молекуле, а дипольный момент зависит еще и от расстояния между ними. [c.78]

    Молекулу с ионной связью (перенос электрона) можно представить схемой Н С1", а ее дипольный момент будет иметь величину [c.58]

    Сольватация в первом приближении может рассматриваться как результат ориентирующего и поляризующего действия электростатического поля иона или диполя на молекулы растворителя.Предложено несколько соотношений, связывающих константы скорости реакций ионов или дипольных молекул с диэлектрической постоянной растворителя, величина которой связана с макроскопической поляризуемостью растворителя. [c.119]

    Наиболее непосредственно полярность связи в двухатомных молекулах характеризуется электрическим дипольным моментом. У чисто ковалентных молекул с одинаковыми ядрами > ц = 0, у молекул галогенидов щелочных металлов ( ионных молекул ) дипольные моменты достигают 30—40 10 ° Кл м (10—12 Д ), дипольные моменты 1,5— —3,010 ° Кл м (0,5—1 Д) указьгаают на умеренную полярность связи. Однако сама по себе величина ц еще не говорит о величине зарядов, возникающих на атомах, и, следовательно, о степени ионности связи, так как ц зависит и от заряда связи, и от межъядерного расстояния. Более удобной мерой полярности связи может служить так называемый критерий Полинга  [c.133]

    ХИМИЧЕСКАЯ СВЯЗЬ — взаимодействие между атомами, обусловлива-ющее образование устойчивой многоатомной системы (молекулы, радикала, молекулярного иона, комплекса, кристалла и др.). Все химические превращения сопровождаются разрушением химической связи. X. с. возникает вследствие кулоновского притяжения между ядрами и электронным зарядом, распределение которого обусловлено динамикой поведения электронов и подлежит квантовомеханическим законам. Электронный заряд многоатомной системы возникает нри обобществлении атомных электронов. Различают ионную (гетерополяр-ную, электровалентную), ковалентную (гомеополярную, атомную) и металлическую X. с. X. с. н зыз 1ЮТионной, если она возникает вследствие практически полного перехода электронов с орбитали одного атома на орбиталь другого. Например, во время реакции натрия с хлором атомы натрия теряют, а атомы хлора присоединяют по одному электрону, превращаясь в ионы Ыа+ и С1 (электронный заряд локализован на атомах). Если ионная связь возникает между ионами и полярными (дипольными) молекулами, то ее называют ионно-ди-10 8-149 [c.273]


    Среди многих свойств, определяющих адсорбционные явления, особое место занимает величина дипольного момента ц, который возникает при адсорбции. Величина дипольного момента указывает на тип связи (большие значения л —ионные связи, малые значения М- — ковалентные), кроме того, работа выхода электрона из металла, необходимая для удаления электрона в вакуум с наиболее высокого занятого уровня в твердом теле, изменяется вследствие возникновения при адсорбции поверхностных диполей. Это явление связано с из- [c.369]

    Занятие 2. Химическая связь. Валентность. Ковалентная связь, ее сво -ства. Неполярная и полярная связь. Ионная связь. Определение дипольных моментов. Геометрическая /Тюрмула молекул. Расчет э г ективныу зарядов. Занятие 3. Донорно-акцепторняя, водородная связь. Межмолекулярное взаимодействие. Метоп МО. [c.181]

    Отношение дипольного момента молекулы, определенного экспериментально (ц.эксп), к теоретическому дипольному моменту молекулы с ионной связью (Цион) Характеризует степень ионности ковалентной связи. Степень ионности ковалентной связи можно выразить как [c.58]

    Каков же механизм электролитической диссоциации В самом деле, почему электролиты диссоциируют на ионы Учение о химической связи атомов в молекулах помогает ответить на этот вопрос. Легче всего диссоциируют вещества с ионной связью. Молекулы таких веществ, или ионные пары (см. с. 167), уже состоят из ионов. При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения (ион-дипольное [c.151]

    При растворении в воде веществ с полярной ковалентной связью проис.ходит взаимодействие дипольных молекул электролита с дипольными молекулами воды. Например, при растворении в воде хлороводорода происходит взаимодействие молекул H I с молекулами Н2О. Под влиянием этого взаимодействия изменяется характер связи в молекуле НС1 сначала связь становится более полярной, а затем переходит в ионную связь. Результатом процесса является диссоциация электролита и образование в растворе гидратированных ионов (рис. 9). [c.181]

    Поляризация ионов, характеризующая ту или иную степень смещения электронов, имеет очень большое значение, поскольку она, приводя к сокраще1 ию межатомных расстояний и, как следствие, к уменьшению дипольного момента, превращает ионную связь в полярную ковалентную. С увеличением деформируемости аниона может произойти полный переход электронов от него к катиону, т. е. образуется ковалентная связь (совместное об- [c.120]

    Вода, вследствие дипольного характера ее молекул, является хорошим растворителем большого числа соединений с ионными связями. Энергия, которая требуется для разрушения ионной кристаллической решетки, компенсируется в значительной мере энергией образования ион-дипольных связей, т.е. энергией образования гидратированных ионов. [c.188]

    Наиболее типичными дипольными моментами для характеристики ионной связи обладают соединения лития и калия, так как в этих соединениях влияние симметрии и завершенности строения орбита-лей не проявляется. Гибридизация орбиталей у атомов Ве и А1 приводит к симметричным линейным и плоским молекулам, для которых [c.86]

    Наибольшее поверхностное натяжение у воды, обладающей высокой полярностью большой дипольный момент (1,84 О), малые размеры молекул, наличие водородных связей. В жидкостях, полученных при плавлении ионных кристаллов, сохраняются ионные связи между частицами и они хорошо проводят электрический ток (электролиты). Поверхностное натяжение у этих жидкостей высокое. Еще выше оно (до 0,30 Дж/м ) при сохранении ковалентных и ионных связей в расплавах кристаллов силикатов и алюми носили катов. Наибольшая величина поверхностного натяжения у жидких металлов, она на порядок выше поверхностного натяжения полярных жидко стей и некоторых расплавов ионных кристаллов. [c.218]

    Длина связи в КВг равна 2,82 А, а в КС1 2,67 А (см. табл. 12-4). В предположении о чисто ионной связи в этих молекулах им следовало бы приписать следующие дипольные моменты Црассч- [c.537]

    Поляризация ионов, представляющая собой ту или иную степень смещения электронов, имеет очень большое значение, так как она, приводя к сокращению длежатомных расстояний и, как следствие, к уменьшению дипольного момента, превращает ионную связь в полярную ковалентную. С увеличением деформируемости аниона может произойти полный переход электронов от него к катиону, т. е. образуется ковалентная связь последняя отличается от ионной рядом признаков, в частности направленностью. Наоборот, чем меньше поляризация иона (например, аниона), тем ближе соединения данного атома к ионному типу. Так как поляризация резко увеличивается с ростом заряда ионов, то становится очевидным, что среди соединений типа А +В или Аа+В " и тем более А В (или Аз+В ) не может быть веществ о чисто ионным типом связи (даже для благородногазовых структур). Поляризационные представления важны и потому, что они позволяют внести соответствующие коррективы в схему Косселя и тем самым точнее описать свойства самых разнообразных соединений, их индивидуальные особенности. [c.209]

    Укажем кратко на различия между современными нредста-влепиями и представлениями, существовавшими в период 1934— 1937 г. В противоположность прежним взглядам мы считаем, что поверхность вольфрама обладает некоторой степенью неоднородности. Форму кривой 2 на рис. 33 нельзя объяснить, если не допустить присутствия участков, где адсорбированные ионы связаны с поверхностью прочнее, чем на остальной части поверхностн. Несомненно, что эта неоднородность обусловлена не примесями или посторонними атомами. Она может быть вызвана наличием различг[ых кристаллографических граней. Во-вторых, мы более не придерживаемся точки зрения, что при более высоких заполнениях атомы адсорбированы рядом с ионами. При низких значениях О весь адсорбированный металл находится на поверхности в виде ионов. При увеличении степени заполнения тип связи изменяется и с некоторого определенного значения О весь металл оказьшается адсорбированным в виде атомов. Под влиянием поля металла происходит поляризация этих атомов. С увеличением заполнения диполь-иые моменты адсорбированных атомов уменьшаются вследствие взаимной поляризации и наблюдается минимум работы выхода, когда приходящееся на один атом уменьшение дипольного момента уже больше не компенсируется увеличением числа диполей на единицу поверхности. [c.139]

    Согласно методу МО, переход к ионным связям сопряжен с тем, что в зависимости от коэффициентов С и сг вероятность нахожде ия электронов у одного из ядер оказывается выше, чем у другог . Вследствие этого в молекулах электрический заряд распределен неравномерно, и в них появляется так называемый дипольный момент (произведение расстояния между центрами зарядов на заряд х = е/). При измерении дипольного момента всегда надо иметь в виду, что существует различие между постоянным и индуцированным (наведенным) дипольным моментом. [c.99]

    Процесс растворения. Растворение — одно из наиболее ярких проявлений взаимодействия между частицами (молекулами, ионами) различной химической природы. Рассмотрим это на примере растворения какого-нибудь ионного соединения (например, Na l) в воде, как типичной полярной жидкости. Между ионами Na и СГ имеется ионная связь, между молекулами воды действуют силы Ван-дер-Ваальса и водородная связь, а между ионами натрия и хлора, с одной стороны, и полярными молекулами воды, с другой, возникает ионо-дипольная связь. Все эти виды связи как бы конкурируют между собой. [c.160]

    При образовании соединений типа SXj два облака s p возбужденного атома Э гибридизируются, поэтому образуются молекулы линейного строения X—Э—X с дипольным моментом, равным нулю (на пример, молекулы Be lj). Однако во фторидах щелочноземельных металлов ( aF., и др.) ионные связи и кристаллические решетки их имеют ионный характер. [c.275]

    Отсутствие направленности ионной связи приводит к важному свойству — ненасыщаемости связи. Это, в частности, означает, что электрические поля, например катионов, могут взаимодействовать с частицами, расположенными вне кристалла. Так, катионы на поверхности кристалла могут притягивать дипольные молекулы воды. Это явление обусловливает существование кристаллогидратов многих солей, содержащих в своем составе несколько молекул воды (например, Си504-5Н20). Это же явление лежит в основе процессов поглощения воды поверхностью минералов и смачивания минералов. [c.162]

    В чем же причина этого явления Вспомним, что галоидово-дороды (газы) кипят при значительно низшей температуре, чем вода. При сопоставлении воды и спирта между ними легко обнаруживается аналогия. Так, например, молекула воды и молекула спирта содержат гидроксильную группу. Связь между кислородом и водородом в молекуле спирта, так же как и в молекуле воды, частично ионная. Напомним (стр. 65), что в молекуле воды связи между атомами водорода и кислорода направлены так, что образуют между собой угол, в вершине которого находится кислород. Вследствие этого распределение электрических зарядов в молекуле воды несимметрично, и в ней возникает довольно высокий дипольный момент (fi = l,85) между кислородом и водородом устанавливается частично ионная связь возникаюш,ие на кислр-роде и водороде частичные отрицательные и положительные заряды по величине приблизительно равны одной трети заряда электрона  [c.138]

    Отношение дипольного момента молекулы АВ, определенного экспериментально (цаис), к теоретическому дипольному моменту молекулы с ионной связью ( гион) характеризует степень ионности связи. Рассчитайте степень ионности связи в молекуле НС1, используя данные табл. 4.11 и значение длины связи 1,275 А (1,275-10 см). [c.224]

    Огромное различие трифторида алюминия и тетрафторида кремния не обусловлено тем не менее каким-либо значительным изменением типа связи — в обоих случаях связи имеют промежуточный характер между ярко выраженными ионными связями М+р- и нормальными ковалентными связями М р ,— а скорее является результатом изменения взаимного расположения атомов. Три летучих вещества существуют в виде отдельных молекул 31р4, РРз и 5Рв (не имеющих дипольных моментов) как в жидком и кристаллическом, так и в газообразном состояниях (рис. 9.4), и их плавление или испарение происходит лишь за счет теплового движения, в результате которого преодолеваются слабые меж- [c.248]

    Следствием этого Является уменьшение межъядерного расстояния разноименных ионов и дипольного момента связи, т. е. понижение степени ионности связи. Поэтому полное разделение зарядов в ионных соединениях, например в А В , а тем более в А +В , А В , аГвГ и др., не может осуществиться. Еще более нереальны высокие заряды, приписываемые атомам в сложных ионах, например -1-7 — [c.103]

    Если молекула симметрична и в ней ковалентно связаны два одинаковых атома, как в молекулах На, I2 или СН3—СНз, то электронное облако симметрично центру связи, дипольный момент молекулы равен нулю. Оба электрона, участвующие в образовании связи, с одинаковой вероятностью находятся около каждого из соединенных атомов. Но если связанные атомы неодинаковы или молекула не симметрична, то электронная плотность сдвинется к одному из атомов и вероятность пребывания связывающих электронов в поле этого атома возрастет. Таким образом, один атом обычно бывает более электроотрицательный (электроотрицательность — это способность атома в молекуле притягивать к себе электроны). Мерой способности к такому присоединению служит так называемое сродство к электрону, характеризующее энергию, выделяющуюся при присоединении электрона к нейтральному атому. Следствием вышеуказанного сдвига будет появление частичных, очень маленьких зарядов (доля заряда электрона) на связанных ковалентной связью атомах, в результате чего связь приобретает частично ионный характер. Примером может служить молекула НС1, где электронная плотность сдвинута (за счет гибpидизaции ) к атому хлора. Такую ковалентную связь называют полярной. Молекула, содержащая полярную ковалентную связь, обладает дипольным моментом, равным произведению [c.46]

    Во всех этих примерах образование двойного слоя связано с определенными свойствами межфазной границы, проницаемой для заряженных частиц одного какого-либо сорта электронов, катионов металла, ионов малого размера. Если перенос электрических зарядов через границу раздела фаз невозможен, то двойной слой возникает в результате избирательной адсорбции поверхностно-активных ионов или дипольных молекул растворителя. Подобного рода скачки потенциала обнаружены на границе раствор—воздух, если в растворе присутствуют поверхностно-активные ионы. При адсорбции дипольных молекул, например на ртути, происходит их ориентация, вследствие которрй к поверхности металла оказывается обращенным какой-либо определенный конец диполя, и двойной слой реализуется внутри самих адсорбированных молекул (рис. 2). [c.8]

    Полярность связи характеризуется ее дипольным моментом, к-рый для большинства ковалентных связей составляет О—3D, для коордииац. связей — обычно 2—7D. Дипольные моменты соединений с иониой связью существенно выше, напр, для молекулы КВг — 10,aD (1D = = 3,33564-10 Кл-м). [c.646]

    Мы начнем с рассмотрения электростатической связи, образующейся в результате притяжения между противоположно заряженными частицами. В этом случае возможны три типа взаимодействий ион-ионные (ионные связи), ион-днпольныс и диполь-дипольные. [c.28]


Смотреть страницы где упоминается термин Ионная связь ион-дипольная: [c.130]    [c.101]    [c.265]    [c.278]    [c.40]    [c.81]    [c.213]    [c.30]    [c.268]    [c.126]    [c.141]    [c.142]   
Физическая химия (1978) -- [ c.447 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольные ионы

Дипольный момент и частично-ионный характер связей

Ион ионы связи

Ионная связь

Ионный характер связи дипольный момент

Молекула ионно-дипольная связь

Химическая связь ионно-дипольная



© 2025 chem21.info Реклама на сайте