Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические свойства сплавов титана

    Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкристаллитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен- [c.23]


    Наибольшее влияние на размер зерна в слитке оказывает совместная добавка титана и бора, меньшее (в порядке убывания) титан, бор, ниобий и цирконий. Самое большое практическое значение как модификатор имеет титан, оказывающий сильное воздействие на структуру и являющийся самым. экономичным. Обычно его вводят 0,02—0,10%. Все более широкое ирименение находят совместные добавки титана и бора (соответственно 0,02—0,04 и 0,005—0,01 %). Ниобий и цирконий стабильно измельчают зерна при концентрациях 0,10—0,20%. Модификаторами для силуминов служат мех. смеси солей 33%-ного хлористого натрия и 67%-ного фтористого натрия или 62,5%-ного хлористого натрия, 12,5%-НОГО хлористого калия и 25%-ного фтористого натрия, введение которых обычно составляет 2,0% от массы шихты. Измельчение зерна в слитке сопровождается улучшением мех. и технологических свойств сплава. В качестве модификаторов магния сплавов используют цирконий, титан, ванадий, бор и совместную добавку титана и бора. Наибольшей модифицирующей способностью отличается совместная добавка титана и бора, меньщей (в порядке убывания) бор, цирконий, ванадий и титан. В слитках магниевых сплавов весьма эффективное измельчение наблюдается уже нри малых концентрациях (0,03—0,05%) [c.835]

    В состав сплава ЛГо 2 входит титан. Его назначение связать растворенные в металле газы, кислород и азот, уменьшить размер литого зерна и, следовательно, улучшить технологические свойства сплава, обработку его в горячем и холодном состояниях. В этом же направлении действуют цирконий, церий и некоторые другие элементы. [c.320]

    Титан и его сплавы используют в возрастающем масштабе в промышленности благодаря преимуществу их специальных характеристик. Такие свойства, как относительно высокая прочность, превосходная общая коррозионная стойкость и плотность, промежуточная между алюминием и сталью, делают титан перспективным конструкционным материалом. Прогресс в производстве титана способствовал получению различных полуфабрикатов из титановых сплавов от проволоки и фольги до крупногабаритных заготовок. Возможно также производство деталей методами литья и порошковой металлургии. Большинство технологических операций на титане совершаются при высоких температурах. Вследствие большой реактивности сплавов титана и тенденции к загрязнению поверхности необходимо соблюдение мер предосторожности при его производстве. Однако реактивность, особенно способность титана растворять собственные окислы, может быть использована в производстве сложных деталей методами диффузионной сварки. [c.413]


    Чистейший, так называемый иодидный титан, получаемый термическим разложением тетраиодида титана в вакууме, очень пластичен и имеет сравнительно невысокую прочность. Его применяют, главным образом, для исследовательских целей. Содержание даже незначительных примесей в технически чистом титане (0,03—0,15 % кислорода, 0,01—0,04% N, 0,02—0,15% Ре, 0,01—0,05% Si, 0,01—0,03 % С) заметно повышает его прочностные свойства. Поэтому не только сплавы титана, но и непо средственно технически чистый титан (ВТ1—О и ВТ1—00) широко применяют, например в химической промышленности, в частности, в теплообменной аппаратуре. Однако разнообразие запросов техники, в начале главным образом из необходимости иметь возможно широкий спектр механических свойств и технологических обработок, а также в целях возможного повышения коррозионной стойкости металлического материала, стимулировали создание многочисленных титановых сплавов с разнообразными физико-химическими и технологическими свойствами [2, 200]. [c.243]

    Титан и его сплавы. В настоящее время титан все чаще используется для изготовления химической аппаратуры. Это объясняется его весьма ценными свойствами исключительно высокой прочностью, жаростойкостью и жаропрочностью, малой плотностью, высокой сопротивляемостью эрозии и усталостным напряжениям, хорошими технологическими свойствами и высокой коррозионной стойкостью, превосходящей в ряде случаев стойкость высоколегированных кислотостойких сталей. [c.22]

    К сплавам, в структуре которых наряду с а-фазой содержатся интерметаллиды, относится английский сплав Т1 — 2,5% Си, в котором содержание меди соответствует ее предельной растворимости в а-титане. В отожженном и закаленном состоянии этот сплав имеет такие же технологические свойства, как и технический титан. При старении сплав упрочняется на 30—50% в результате дисперсионного твердения и приобретает предел прочности 735—785 МПа. Из сплава [c.14]

    Впервые о возможности получения сплавов d—Ti я Zn—Ti из цианистых электролитов было сообщено в [77]. В [78] описан технологический процесс электроосаждения сплава d—Ti на детали самолетов из высокопрочных сталей 4340, применяемый на заводах фирмы Боинг . Растворимую соль титана получали следующим образом. Фирменная титановая паста, содержащая 15% титана, наносилась на фильтровальную ткань. Затем паста растворялась с помощью перекиси водорода и через фильтровальную ткань переводилась в цианистую ванну кадмирования ( d 21—26 г/л, Na N 97—128 г/л, NaOH 15—19 г/л, Nas Os 37,5 г/л). Из-за нестабильности перекисных титановых соединений содержание титана в ванне должно постоянно корректироваться. Корректировка производилась при непрерывном растворении и фильтрации титана через фильтровальную ткань также с помощью перекиси водорода. Содержание титана в электролите составляло 0,24—0,41 г/л. На изделие вначале наносится тонкая пленка сплава в течение 15 сек. при повышенной плотности тока 4,3—4,8 а/дм . Затем электролиз ведут при обычной плотности тока 1,6—3,2 а/дм . Содержание титана в осадке составляет обычно 0,1—0,5%. Указывается, что после осаждения такого покрытия толщиной 12,5 мк для восстановления механических свойств изделий требовалось всего 2 часа прогрева при температуре 190° по сравнению с обычными 24 часами. Для надежности на производстве прогрев производили в течение 12 час. По мнению авторов, снижение наводороживания стали при электроосаждении сплава d—Ti объясняется, во-первых, тем, что титан сам поглощает значительные количества водорода, и, во-вторых, частич- [c.204]

    Современные нержавеющие и кислотоупорные стали представляют собой в основном сплавы железа с хромом, который сообщает им высокую антикоррозионную стойкость. Дополнительное легирование хромистых сталей никелем, молибденом, титаном и другими элементами улучшают их коррозионные и технологические свойства, что позволяет широко применять их в самых разнообразных областях промышленности. [c.217]

    К сплавам, структура которых представлена а-фазой с выделениями интерметаллидов, относится английский сплав — 2% Си, в котором содержание меди соответствует ее предельной растворимости в а-титане. В отожженном и закаленном состоянии этот сплав обладает такими же технологическими свойствами, как и технический титан. При старении сплав упрочняется на 30—50% за счет дисперсионного твердения и приобретает предел прочности 735—785 МН/м . Из сплава Т1 — 2% Си в Англии поставляют листы и полосы. Этот сплав подвергается сварке, причем пластичность сварного соединения практически равна пластичности основного металла [13]. [c.12]

    Металлическая матрица композиционных материалов выбирается из условий получения максимальной удельной прочности материала, обеспечения связи между упрочняющими элементами и получения необходимых технологических и эксплуатационных свойств. Она обеспечивает передачу нагрузки на волокна, вносит существенный вклад в модуль упругости и снижает чувствительность к концентраторам напряжений. В качестве матриц используются магний, алюминий, титан, кобальт, никель и их сплавы, стали. Преимуществами металлических матриц являются  [c.78]


    По сравнению с традиционно используемыми материалами для клапанных пластин титан и его сплавы, обладая близкими прочностными характеристиками, имеют ряд существенно отличных свойств низкую теплопроводность, чувствительность к надрезам, склонность к самовозгоранию и т. д. Поэтому технологический Процесс изготовления пластин из титана и его сплавов нужно разрабатывать с учетом специфических характеристик применяемого материала..  [c.176]

    В пром. масштабе используются с 30-х гг. 20 в. Различают модификаторы, создающие в сплаве дополнительные центры кристаллизации (инокуляторы), и модификаторы, препятствующие росту зерна (ингибиторы). Для каждого металла и его сплава есть определенный модификатор, введение которого обеспечивает макс. эффект измельчения зерна и оптимальные технологические и мех. свойства. В качестве модификаторов алюминия сплавов применяют титан, бор, ниобий, цирконий и совместную добавку титана и бора. [c.835]

    Свойства титана требуют применения особых технологических приемов производства и обработки. При повышенных температурах титан взаимодействует с обычными футеровочными материалами, со мн( гими металлами образует сплавы, имеющие низкие температуры плавления ( 1000° С). Для получения титана необходим процесс, который протекал бы при температуре ниже точки плавления сплава титана с материалом реактора. Из-за взаимодействия титана с газами получают и плавят его в атмосфере аргона или в вакууме. [c.414]

    Наибольшее применение для химического аппаратостроения могут найти технически чистый титан ВТ-1 к его сплав 0Т-4 , обладающие комплексом ценных технологических и эксплуатационных свойств. [c.34]

    Титан и сплавы на его основе сочетают высокие физико-механические свойства, высокую коррозионную стойкость в агрессивных средах и удовлетворительную технологичность при переработке в изделия. При правильном использовании титана и его сплавов в соответствующих средах не только увеличивается срок безаварийной работы аппаратуры, но и резко сокращаются простои, поддерживаются оптимальные параметры технологического процесса. [c.5]

    Цирконий соответственпо строению электронной оболочки н, следовательно, своему месту в периодической системе элементов Д. И. Менделеева является аналогом титана в физико-химическом отношении. Для металла циркония это выражается в подобии его титану в отношении физических, механических, технологических, коррозионных свойств и характера образуемых сплавов. Особенность циркония — низкое сечение захвата тепловых нейтронов — в сочетании с высокими конструкционными и коррозионными свойствами, тугоплавкостью сделала его очень ценным металлом в некоторых отраслях иромышленности. Поэтому в последние 15—20 лет происходит широкое освоение циркония разработка методов получения и осуществление производства циркония высокой чистоты, детальное исследование его свойств и сплавов. [c.3]

    С целью повышения жаропрочности молибдена разработаны различные сплавы. С точки зрения обычных представлений эти сштавы являются микролегированными углеродом, цирконием и титаном. Указанные элементы, образуя дисперсную вторую фазу (карбиды), значительно повышают жаропрочные свойства молибдена, однако микролегирование мало влияет на коррозионную стойкость (показано ниже). Изменение корро-зиошой стойкости достигается при глубоком легировании. Для молибдена такое легирование нецелесообразно, так как, по-видимому, оно должно приводить к ухудшению его технологических свойств. Кроме того, и нелегированный молибден обладает высокой коррозионной стойкостью в концентрированных кислотах — практически на уровне тантала. [c.86]

    Применение титана в металлургии сплавов и сталей известно сравнительно давно. Особенно успешно применяется легирование титаном сталей, в том числе и так называемой нержавеющей хромоникелевой стали марки 18-8, которой тптан сообщает еще более ценные антикоррозионные и технологические свойства. Добавки титана устраняют интеркристаллитную коррозию сварных швов в изделиях из нержавеющей стали. Известно, что легирование медных, никелевых и алюминиевых сплавов титаном сообщает им склонность к старению и улучшает их физико-механические и антикоррозионные свойства. [c.208]

    Титан и его сплавы имеют высокую прочность, хорошие технологические свойства и повышенную коррозионную стойкость. Темпы роста производства титана выше, чем других конструкционных металлов. Титан используют в химической, гидрометаллургической, пищевой про-мыленности, цветной металлургии и других отраслях [105 с. 25. 132—134]. Применение титана может быть экономически оправдано при использовании в природных коррозионных средах, особенно в морской воде (в подводных лодках глубокого погружения, опреснительных установках и т. д.). Коррозионная стойкость титана и его сплавов достаточно полно освещена в рабогах [39, 135—137]. Катоднолегированные сплавы на основе титана рассмотрены в гл. IV. Здесь кратко суммируются данные, связанные с природой коррозионной стойкости титана особенностями электрохимического и коррозионного поведения титана и его сплавов. Окислы на титане возникают при окислении на воздухе, анодном окислении, а также при самопассивации его не только в сильноокислительных, но и в нейтральных и слабокислых растворах. Пассивация титана в электролитах происходит только в присутствии воды, что указывает на участие в образовании защитных окисных слоев кислорода воды, а не молекулярного кислорода, растворенного в электролитах [39]. Особенностью титана является также его большое сродство к водороду. Гидрид на поверхности титана был обнаружен после коррозии его в растворах серной и соляной кислот, а также при растворении титана в плавиковой кислоте. [c.224]

    Из перечисленных выше новых конструкционных металлов и сплавов наибольшее распространение в химическом машиностроении нашел титан. Титан обладает исключительно высокими прочностными показателями, л<аростойкостью и жаропрочностью, малым удельным весом, высокой сопротивляемостью к эрозии и к усталостным напряжениям, отсутствием склонности к межкристаллитной коррозии, благоприятными технологическими свойствами и по своей коррозионной стойкости превосходит в ряде случаев высоколегированные кислотостойкие стали. Ниже приводятся основные физикомеханические свойства технически чистого титана марки ВТ1 (0,3% Ре 0,15% 51 0,05% С 0,15% Ог 0,015% На 0,04% N2 остальное Т1). Уд. вес 4,5 з/сж температура плавления 1725° С коэффициент линейного расширения (в интервале О—100° С) 8,2 10- теплопроводность 0,039кал/см-сек-град, электропроводность по сравнению с электропроводностью меди, принятой за 100, 3,1 предел прочности 45—60 кг/мм предел текучести 25—50 кг/мм относительное удлинение — не менее 25%, относительное сужение не менее 50% твердость по Бринелю 160—200 модуль упругости 10 500—11 ООО кг/мм . [c.247]

    Важность проблемы создания и применеяия Н0 вых химически стойких металлических материалов в различных отраслях нашей промышленности, особенно в химическом машиностроении, подчеркнута в Программе КПСС. За последние два десятилетия в связи с интенсификацией и разработкой новых технологических процессов, протекающих в агрессивных средах при высоких температурах и давлениях, значительно возрос интерес к использованию новых конструкционных материалов на основе тугоплавких и редких металлов, таких как титан, ниобий, ванадий, молибден. Эти металлы и их сплавы обладают весьма ценными физико-химическими и механическими свойствами, а по коррозионной стойкости во многих случаях значительно превосходят сплавы на основе железа и цветных металлов, которые являются до настоящего времени основными конструкционными материалами в химическом аппарато-строении. По сырьевым ресурсам и возможностям металлургической промышленности такие металлы, как титан и ниобий (а также и другие из числа тугоплавких), могли бы уже сейчас широко использоваться в химическом машиностроении. Однако их внедрение в эту отрасль промышленности идет сравнительно медленно. Одна из причин отставания — отсутствие необходимых сведений о свойствах этих металлов и их сплавов, в особенности об их химической стойкости и характере поведения в различных агрессивных средах. [c.65]

    Наиболее высокой стойкостью отличаются титан ВТ 1-1 и его сплавы 0Т4, АТЗ. Независимо от состава катализатора и природц. растворителя при температурах до 200° С они подвергаются лишь незначительной равномерной коррозии. Во многих опытах совсем не наблюдалось коррозии образцов, поверхность металла покрывалась тончайшей окисной пленкой за счет примеси кислорода в техническом водороде. Лишь в двух случаях, при нарушении технологического режима (повышение температуры в зоне реакции до 450° С и отщепление НС1 до 30%) происходило образование гидридов и образцы разрушались (рис. 5.15—5.17). Специальные опыты, поставленные с целью определения влияния водорода на свойства титановых сплавов, а также исследование диффузии водорода через образцы при восстановлении хлорнитробензола подтвердили работоспособность этих сплавов [4]. [c.172]

    Коррозии подвержены основные конструкционные металлы— железо, алюминий, медь и титан. Эти металлы составляют основу конструкционных сплавов. Широкое применение получают также сплавы на основе магния для конструкций, не эксплуатирующихся в растворах электролитов. Именно поэтому они не вощли в число рассматриваемых ниже. Применение металлов в качестве конструкционных определяется не распространенностью их в земной коре, а комплексом физико-химиче-ских, технологических и механических свойств, которым должны удовлетворять конструкции. Распространенность элементов в земной коре такова, % А1 7,45 Ре 4,20 Mg 2,35 Т1 0,61 2п 0,02 Си 0,01 N 0 0,00003. [c.6]


Смотреть страницы где упоминается термин Технологические свойства сплавов титана: [c.103]    [c.836]    [c.320]    [c.148]    [c.64]    [c.626]    [c.685]    [c.722]   
Смотреть главы в:

Титановые конструкционные сплавы в химических производствах -> Технологические свойства сплавов титана




ПОИСК





Смотрите так же термины и статьи:

Сплавы свойства

Сплавы титана

Технологические свойства

Титан, свойства

Титан, свойства, сплавы



© 2024 chem21.info Реклама на сайте