Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота концентрированные растворы, применение

    Однако вследствие полимерной природы углеводородов появляются некоторые необычные трудности в реакции сульфирования их. Сульфирование сополимера чисто гетерогенная реакция. Шарикам углеводорода дают предварительно набухнуть в органическом растворителе, чтобы обеспечить мягкое и равномерное проникновение сульфирующего агента в твердую фазу [114 в противном случае наблюдаются потемнение и крекинг с образованием мягкой и нестойкой смолы. Сульфирование можно довести до конца при применении избытка концентрированной серной кислоты при. 100 [114] в полученном продукте содержится по одной сульфогруппе на каждое бензольное кольцо. Удаление избытка сульфирующего агента после окончания реакции вызывает изменение объема и рассеивание теплоты разбавления. Так как эти факторы также приводят к разрушению шариков, то на этой стадии следует применять специальные методы для того, чтобы реакция протекала умеренно, нанример обработка концентрированным раствором поваренной соли. Другой исследователь [87] описывает сульфирование 95%-ной кислотой полистирола в виде тонкой пленки, что обеспечивает хорошую проницаемость и эффективный отвод тепла. Наиболее целесообразно применять ступенчатое разбавление отработанной кислоты. При жестком сульфировании хлор- [c.538]


    Концентрированная серная кислота при нагревании растворяет, в отличие от разбавленной серной кислоты, и металлы, стоящие за водородом в ряду напряжений медь, серебро и ртуть, но она не действует, опять-таки в отличие от своих растворов, на железо. Благодаря этому обстоятельству серная кислота может перевозиться в железной таре, что несравненно безопаснее и удобнее, чем применение стеклянной тары. Но обратно на завод железные бочки из-под серной кислоты возвращаются от потребителя нередко сильно разрушенные внутри коррозией остатки серной кислоты притягивают влагу из воздуха, в бочках получается раствор серной кислоты, а раствор ее, в отличие от концентрированной серной кислоты, железо растворяет. [c.397]

    В процессе в качестве катализатора применяют 96—98 %-ную, считая на моногидрат, серную кислоту. Расход катализатора на 1 т алкилата зависит от содержания олефинов в сырье для пропиленового сырья — 190 кг, для бутиленового сырья — от 80 до 100 кг, для амиленового сырья — 120 кг. Объемное соотношение кислота углеводороды поддерживается в реакционной зоне от 1 1 до 2 1. Поскольку кислотные свойства серной кислоты в растворе углеводородов значительно выше, чем в воде, снижение активности катализатора при алкилировании будет зависеть от разбавления ее водой. Поэтому нужна тщательная осушка сырья перед подачей в зону реакции. Концентрация кислоты понижается также за счет накопления в ней высокомолекулярных соединений. Применение более концентрированной кислоты приводит к окислению углеводородов, осмолению продуктов, выделению диоксида серы и снижению выхода алкилата. При меньшей концентрации идет реакция полимеризации олефинов с образованием разбавленной серной кислоты, корродирующей аппаратуру. В серной кислоте должны отсутствовать примеси, такие, как соединения железа, например сульфат трехвалентного железа, снижающие эффективность процесса. [c.60]

    Метод, описанный на стр. 196, может быть также применен для определения молибдена и вольфрама, если содержание в тантале каждого элемента составляет 2-10 —2-10 о. Для большего количества молибдена и вольфрама применяют методы, описанные на стр. 195 и 200. Пробу растворяют в смеси 5 мл фтористоводородной и 0,5 мл азотной кислот и осторожно нагревают для ускорения растворения. Добавляют 3. л концентрированной серной кислоты, выпаривают раствор досуха и сплавляют остаток с гидросульфатом калия (в присутствии серной кислоты, когда определяют молибден) и продолжают, как описано в методиках на стр. 194, 195 или 200. Когда применяют мето- [c.208]


    В соляной кислоте (плотн. 1,19) Digitalinum verum растворяется, принимая желтую окраску, в серной кислоте он растворяется сначала с желтым цветом, который затем быстро переходит в кроваво-красный. Если пользоваться для растворения серной кислотой, содержащей хлорное железо или азотную кислоту, то появляется тотчас же быстро проходящее сине-красное окрашивание (похожее на окраску цветов дигиталиса). Более стойкое окрашивание получается при применении только английской серной кислоты. Желтый цвет дигиталина в концентрированной соляной кислоте при нагревании переходит в фиолетовый. Если растворить 0,001 г дигиталина в 5 мл уксусной кислоты, содержащей окись железа, и наслоить этот раствор на серную кислоту, то образуется карминово-красное кольцо. [c.510]

    Представляет собой концентрированный юдный раствор серной кислоты. Может найти применение в производстве минеральных удобрений, кожевенной промышленности. [c.42]

    Многие реагенты благоприятствуют конденсации. Наиболее часто применяются концентрированная [51 ] и 73%-ная серная кислота [79], раствор хло-)истого водорода в уксусной кислоте [80] или спирте [81], хлористый цинк 82], фосфорная кислота, этилат натрия, борный ангидрид, уксуснокислый натрий [83], хлорокись фосфора [63], пятиокись фосфора [84] и хлористый алюминий [85]. Если концентрированная серная кислота может вызвать сульфирование соединения, то предпочитают применять 73%-ную кислоту. Сульфогруппа, вступившая в цикл при конденсации, способна отщепляться при более высоких температурах [86]. Во всех случаях, за исключением двух, при применении серной кислоты в качестве конденсирующего средства получают кумарины. Р-Нафтол дает смесь кумарина и хромона [56], а 4-хлор-  [c.141]

    Нальем в три пробирки по 5 мл приготовленного раствора серной кислоты, в четвертую пробирку нальем 15 мл приготовленного раствора гипосульфита, в пятую — 10 мл раствора гипосульфита -1- 5 мл воды, в шестую — 5 мл раствора гипосульфита 4--1-10 мл БОДЫ, Будем теперь сливать попарно отмеренные количества растворов серной кислоты и гипосульфита, точно отмечая по часам моменты сливания каждой пары растворов и моменты появления мути. Легко убедиться, что муть скорее всего появится при сливании раствора серной кислоты с раствором гипосульфита, не разбавленным водой, и позже всего появится при сливании раствора серной кислоты с наиболее разбавленным водой раствором гипосульфита, бъем реакционной жидкости во всех трех опытах одинаковый — 20 мл. Реакция, таким образом, скорее всего идет при применении более концентрированного раствора гипосульфита. [c.95]

    Аммиачно-сернокислотный метод. Процесс выделения концентрированной двуокиси серы действием серной кислоты на растворы сернистокислых солей аммония нашел значительное применение на практике. В СССР уже в 1934 г. по предложению автора была построена установка для извлечения двуокиси серы из отходящих газов контактных сернокислотных систем при помощи аммиака с последующим разложением сернистокислых солей аммония серной кислотой , оэ. [c.95]

    Увлеченные углеводородами капельки серной кислоты и кислые эфиры при защелачивании нейтрализуются раствором едкого натра, который насосом подается в диафрагмовый смеситель и выводится после отделения в отстойнике. Концентрация свежего щелочного раствора не превышает 10%, так как в случае применения более концентрированной щелочи возможно образование солей, закупоривающих смеситель [124]. После снижения концентрации щелочи до 1—2% ее выводят из системы. [c.131]

    Для очистки стеклянной посуды от жира рекомендуется смесь, приготовленная из 15 г тонкоизмельченного бихромата калия К2СГ2О7 с 50 мл концентрированной H2SO4 (хромовая смесь). Эту смесь хранят в склянке, закрытой стеклянной пробкой. Применение хромовой смеси основано на сильном окисляющем действии солей хрома (VI) в кислом растворе. Для мытья посуды применяют, кроме хромовой смеси, и другие моющие средства. Можно также мыть посуду просто концентрированной серной кислотой или растворами концентрированной щелочи (NaOH). Обращение с хромовой смесью, с концентрированными кислотами и щелочами требует осторожности, так как они повреждают поверхность стола, одежду, кожу и бумагу. Можно мыть посуду 5—10%-ным раство- [c.372]

    Следует заметить, что регенерация Н-катионитовых фильтров раствором соляной кислоты должна предусматриваться лишь на тех установках, где техническая соляная кислота является местным продуктам. Во всех прочих случаях целесообразнее ориентироваться на применение серной кислоты, которая примерно в 3 раза концентрированнее оо-ляной кислоты, а потому и более экономична при транспортировании. [c.50]


    Методы ионного обмена. Рассмотренные методы все-таки не дают той степени умягчения, которая требуется для некоторых областей применения воды кроме того, они громоздки и связаны со значительными расходами реагентов. В последние годы широкое распространение получили методы ионного обмена. Твердые материалы, способные к ионному обмену с окружающей средой, получили название ионитов. Сюда относятся различные вещества неорганические и органические, природные или синтетические. Одним из простейших ионообменных материалов является сульфоуголь, получаемый обработкой бурых углей концентрированной серной кислоты при нагревании. В настоящее время наибольшее значение приобрели различные ионообменные смолы, вырабатываемые на основе синтетических полимеров. В зависимости от того, какие ионы в этих смолах обмениваются — катионы или анионы, — различают катиониты и аниониты. Иониты представляют собой твердые электролиты, у которых один поливалентный ион является нерастворимым, а ионы противоположного знака способны к обмену на ионы, находящиеся в окружающем растворе. [c.70]

    Для получения азотной кислоты по реакции (1) используется концентрированная серная кислота, так как при применении разбавленной кислоты образуется разбавленная азотная кислота. Получать концентрированную азотную кислоту непосредственной перегонкой разбавленного водного раствора невозможно. Это иллюстрируют составы паровой и жидкой фаз на рис. 50, 51. Из [c.108]

    Этилен (табл. 7). Как уже было указано, этилен может быть получен из этилового спирта действием концентрированной серной кислоты (см. выше). В промышленности используют этилен газов крекинга (табл. 8), а также этилен, получаемый дегидрированием этана, входящ,его в состав попутного нефтяного газа. Этилен — бесцветный газ, почти без запаха в воде при 0° С растворяется до 1/4 объема этилена. Он находит применение как исходное веш,е-ство для синтеза этилового спирта (стр. 117), различных галогенпроизводных, окиси этилена (стр. 130), иприта, для получения полиэтилена (стр. 74, 468) и других синтетических высокополимеров. Имеет значение применение этилена для ускорения созревания помидоров, лимонов и других овощей и фруктов. Для этой цели при 18—20°С достаточно добавить к воздуху 0,005—0,1 объемного процента этилена. [c.77]

    Политетрафторэтилен не смачивается жидкостями, не растворяется в органических растворителях, имеет низкий коэффициент трения. По химической стойкости превосходит все металлы. Разрушают его только щелочные металлы в расплавленном состоянии (гл. XI, 4). Это обеспечило политетрафторэтилену применение в химической промышленности. Например, из него делают вентили на линиях перекачки концентрированных азотной и серной кислот. [c.384]

    Ниобиевые сплавы с содержанием 0,05—10% Re анализируют фотометрически по реакции с тиомочевиной с точностью 0,1—0,5%. Ниобий маскируют оксалатом влияние молибдена устраняют введением известных количеств его в раствор сравнения. Сплав растворяют двумя способами в концентрированной серной кислоте (при добавлении 2—3 г KHSO4) и в смеси фтористоводородной и азотной кислот (5 1). В последнем случае HF и HNO3 удаляют выпариванием с серной кислотой. Остаток растворяют в 4%-ном растворе оксалата аммония [160]. Второй вариант разложения с последующим определением рения по роданидной реакции с экстракцией роданидного комплекса п эфир применен в работах [269, 410]. [c.257]

    Процесс был разработан фирмой Саймон-Карвз и сотрудниками силовой станции Фу.яхем в Лондоне [34]. Результаты полузаводских испытаний опубликованы многими исследователями [35 — 37]. Схема процесса представлена на рис. 7.9. Дымовые газы промывают концентрированным раствором аммонийных солей для восполнения количества раствора, связанного абсорбируемым ЗО2 добавляют свежий аммиак. К раствору, выходящему из абсорбера, добавляют небольшое количество серной кислоты. Затем раствор нагревают в автоклаве при температуре около 180° С и избыточном давлении 14 ат. В этих условиях протекает автоокисление с образованием сульфата аммония и элементарной серы. Основная трудность заключается в поддержании концентрации аммиака и значения pH, необходимых для абсорбции ЗО2, без одновременной потери аммиака в результате испарения. Решение этой проблемы может быть облегчено применением двух ступеней абсорбции. Содержание аммонийных солей в циркулирующем растворе может возрастать приблизительно до 45 %, вследствие чего после автоклавной обработки получается сравнительно концентрированный раствор сульфата аммония. [c.156]

    Сырой бензин, называемый в Америке нефтью, большей частью после обработки концентрированной серной кислотой и раствором едкого натра подвергается дальнейшей разгонке. Таким образом получают петролейный эфир или газолин (т. кип. 30— ТО°, уд. вес обычно между 0,64 и 0,66), экстракционный или моющий бензин (т. кип. 70—110°) и тяжелый бензин (т. кип. 100—140°, уд. вес примерно 0,75). Указанные температуры кипения и удельные веса должны дать только приблизительную характеристику соответствуюищх продуктов. Они значительно колеблются у продажных сортов, и, поскольку речь идет не об однороднокипящих продуктах, даже границы колебаний не могут быть установлены точно. Бензины применяют преимущественно как моторное топливо, а также для экстракции и как средство для чистки средние масла используют для получения масляного газа, для карбюрирования водяного газа и в качестве топлива для газовых двигателе . Применение других нефтяных погонов ясно из их названий. Бензин, газолин и нефть обладают примерно равной теплотворной способностью ( 10 ООО квал/кг). Из смазочных масел нри дальнейшей переработке получают еще один продукт нефтяной промышленности — парафин. Последний кристаллизуется нри охлаждении смазочного масла от —5 до —10° в виде крупных пластинок. Парафин — воскообразный белый прозрачный продукт — является, подобно другим составным частям нефти, смесью углеводородов. Различают твердый и мягкий парафин. Твердый парафин, называемый также церезином, плавится при 52—56°. Его используют преимущественно для приготовления свечей. Более низкоплавкий [c.457]

    В электрохимическом ряду напряжений свинец стоит непосредственно перед водородом. Нормальцый потенциал свинца по отношению к нормальному водородному электроду составляет —0,130 в. Хотя свинец в соответствии с этим немного менее благороден , чем водород, в разбавленных кислотах он в общем не растворяется. Это связано отчасти с тем, что на чистом свинце водород выделяется только при значительном перенапряжении (ср. стр. 53). В некоторых случаях на свинце образуется нерастворимое покрытие, запщщающее его от дальнейшего действия кислоты так, при соприкосновеции свинца с серной кислотой образуется сульфат свинца, с плавиковой кислотой — фторид свинца. Нерастворимость в умеренно концентрированной серной кислоте важна для применения свинца в аккумуляторах, а также в сернокислотной промышленности, где получающуюся в камерном процессе разбавленную кислоту упаривают на свинцовых сковородах до концентрации 60° Вё (78 вес.% НзЗО ) Правда, приготовленная таким путем кислота содержит примесь свинца. В соляной кислоту свинец также практически не растворяется. В азотной кислоте он легко растворим вследствие своей сильной способности к окислению. [c.587]

    Наиболее поразительным примером влияния структуры амина, обнаружившимся при экстракции урана, является очень высокая экстракционная способность некоторых М-бензильных вторичных аминов с разветвленными алкильными группами (табл. 4) [9, 18, 27]. Сравнение различных комбинаций неразвет-вленных, разветвленных, циклических и ароматических групп во вторичных и третичных аминах показало, что арильная группа играет существенную роль в повышении экстракционной способности-по отношению к урану и что значительное разветвление алкильной группы также необходимо для высокой экстракционной способности. В то же время не должно быть слишком большого уплотнения вблизи атома азота. Большая экстракционная способность К-бензилгептадециламина использовалась для концентрирования урана при анализе очень разбавленных растворов [13]. Если этот или подобный амин будет доступен по умеренной цене в количествах, достаточных для промышленного использования, то это будет способствовать расширению применения процессов экстракции аминами. Можно будет обрабатывать растворы, гораздо более разбавленные по урану и труднее поддающиеся обработке, чем те, которые обрабатываются сейчас. 0,1 М раствором Ы-бензилгептадециламином в керосине можно экстрагировать уран из растворов, 3 М по серной кислоте (из растворов такой кислотности экстракция другими аминами очень низка)  [c.201]

    Применение концентрированных растворов серной кислоты. Согласно высказанным нами теоретическим соображениям, повышенное содержание серной кислоты в растворе не способствует, а замедляет рост кристаллов сульфата свинца, так как его растворимость по мере повышения концентрации кислоты падает (ом. табл. 34). Действительно, опыт хранения аккумуляторов в течение длительного В1ремени блокады Ленинграда показал, что аккумуляторы, залитые крепкими растворами серной кислоты, не потеряли заметно емкости за 3 года хранения, а залитые слабыми растворами — засульфатиро-вались. Таким образом мнение, что хранение пластин аккумуляторов в крепких растворах серной кислоты является причиной сульфатации, — неверно. [c.253]

    Диазотирование и сочетание в процессе получения дисперсных азокрасителеЙ чаще всего производится обычными методами. Если амины достаточно основны и образуют стабильные соли с минеральными кислотами, их диазотируют в водных растворах. В случае использования аминов низкой основности реакцию проводят в концентрированной серной, фосфорной или органических кислотах. Диазотирующим агентом часто служит нитрозилсерная кислота. Одной из лучших методик диазотирования является растворение амина в 50—60% серной кислоте, охлаждение до О—5°С и прибавление раствора нитрита натрия в серной кислоте этот раствор предварительно нагревают до 65—70 °С и перед прибавлением охлаждают. Иногда азосочетание проводят в 20—30% серной кислоте, для чего раствор азосоставляющей охлаждают и к нему цри размешивании добавляют диазораствор. При применении слабоосновных аминов для выделения красителя часто нет необходимости в нейтрализации раствора. Если же нейтрализация необходима, то применяют такие нейтрализующие агенты, как ацетат натрия или аммония. [c.2063]

    Восстановление масел основано на обработке и сорбентами, концентрированной серной кислотой и растворами щелочных реагентов Наиболее широкое применение для указанной цели имеют раз личные сорбенты (отбеливающие земли, силикагель, активная окись алюминия и т, д.), активная поверхность которых по. -лощает содержащиеся в масле продукты его старения. [c.77]

    К серной кислоте добавляют не только азотную кислоту, но и другие окислители насыщенный раствор бихромата калия в концентрированной серной кислоте [20] или в 80 %-ной серной кислоте [21], раствор 3 г бихромата натрия в смеси 20 мл воды и 10 мл концентрированной серной кислоты [22], насыщенный раствор хромовой кислоты в концентрированной серной кислоте [23] и раствор, содержащий 0,5 г перманганата калия в 15 мл концентрированной серной кислоты (Внимание Эти вещества можно смешивать только в небольших количествах, поскольку гептоксид марганца взрывоопасен ) [22]. При применении всех этих реактивов пластинки вначале высушивают, чтобы удалить растворитель, опрыскивают реактивом и после этого натревают, чтобы получить окрашенное или обугленное пятно. Обугленные пятна получают также, опрыскивая пластинки 50 %-ной фосфорной кислотой и затем нагревая их или опрыскивая пластинки концентрированной азотной кислотой [15]. Кроме того, в качестве детектирующих реактивов применяют 25%1-ную [25] и 70%-ную [6] хлорную кислоту. В последнем случае при разделении витаминов на оксиде алюминия пятна компонентов приобретали характерную окраску уже при комнатной температуре. [c.217]

    Следующие полимеры формальдегида получаются из его водного раствора. а-Полиоксиметилен образуется при обработке водных растворов формальдегида твердыми едкими щелочами (N3, К, Са и т.д.). -Полиоксиметилен получается из раствора формальдегида при добавлении концентрированной серной кислоты. у-Лолиоксиметилен осаждается концентрированной серной кислотой из растворов, содержащих метиловый спирт. Наконец, параформальдегид (часто неправильно называемый триоксиметиленом), который является обычным промышленным продуктом, получают в больших количествах выпариванием водных растворов формальдегида в вакууме. Все эти полимеры представляют собой порошки без видимого кристаллического строения (хотя при помощи рентгеноструктурного метода выявляется присутствие нитевидных молекул) они обладают характером гемиколлоидов. Параформальдегид представляет собой смесь полимергомологов со степенью полимеризации в пределах 10—50 степени полимеризации гемиколлоид-ных полиоксиметиленов (а, р и у) лежат в пределах 50—100. При нагревании до 140—160° параформальдегид деполимеризуется без плавления, давая газообразный мономерный формальдегид. Деполимеризация происходит также при более низкой температуре в присутствии определенных реагентов на этом свойстве основывается применение параформальдегида вместо мономолекулярного формальдегида во многих реакциях. [c.671]

    Безводная серная кислота. Серная кислота относится к сильным осушителям, но уже при концент-ращ1и ниже 95% она обеспечивает лишь грубую сушку газов. Чтобы можно было судить, пригодна ли кислота для дальнейшего применения, в каждом литре концентрированной кислоты растворяют 18 г сульфата бария. При понижении концентрации кислоты за счет разбавления влагой выделяется мелкокристаллический белый осадок сульфата бария, который указывает на необходимость замены кислоты. [c.174]

    Н-катионитовых фильтров не пользуются раствором серной кислоты (которая преимущественно применяется для этой цели) с концентрацией более 1,5—2%, так как применение более концентрированных растворов повышает опасность цементации катионита из-за отложений гипса (Са 04) на его зернах.В случае применения раствора соляной кислоты опасности загипсования катионита нет и возможно применение растворов с концентрацией до 5—6%. [c.22]

    Несмотря на то что превращение этилового спирта в диэти-ловый эфир действием концентрированной серной кислоты изучалось уже в 1540 г. [1], получение промежуточной этилсерпой кислоты [2] относится к значительно более поздним годам [3]. До того момента, когда галоидные алкилы и диалкил сульфаты" стали легко доступными соединениями, соли алкилсерных кислот обычно применялись для алкилирования. Для этой цели они используются и в настоящее время в том случае, если реакция легко протекает в водном растворе, например при получении меркаптанов и сульфидов. Значение кислых эфиров как промежуточных продуктов при превращении олефинов в спирты, простые и сложные эфиры и применение щелочных солей различных высокомолекулярных. алкилсерных кислот в цачестве смачивающих веществ и детергентов в последние годы сильно повысили интерес к этому классу соединений. [c.7]

    При выщелачивании разбавленными растворами серной кислоты (100—200 г/л) специальные меры для отделения остатков после выщелачивания обычно не принимаются. Раствор достаточно хорошо осветляется в чанах-отстойниках. При применении более концентрированных по Н2504 растворов силикаты растворяются в значительном количестве, и тогда проводят горячее фильтрование на фильтрах высокого давления. Такой метод находит применение в гидроэлектрометаллургии цинка при проведении электролиза с высокими плотностями тока в сильнокислых электролитах. [c.271]

    Никель несколько более устойчив к действию кислот, чем железо и кобальт. Поэтому он медленнее указанных металлов растворяется в соляной и серной кислотах. При этом образуются соли двухвалентного никеля, например никелевый купорос N1504 УНаО — изумрудно-зеленые кристаллы, растворяемые в воде. Находит применение в гальванотехнике и в текстильной промышленности. Слабая азотная кислота легко растворяет никель (окислительно-восстанови-тельная реакция), концентрированная — пассивирует металл. [c.551]

    Большего извлечения индия в раствор достигают сульфатизацией возгонов. В этом методе их нагревают с концентрированной серной кислотой до 300—400°, затем выщелачивают водой или разбавленной серной кислотой. Раньше сульфатизировали во вращающихся барабанных печах. Теперь применяют печи кипящего слоя (при этом возгоны предварительно гранулируют с серной кислотой). Помимо более полного извлечения индия, как и других редких элементов, преимущество сульфатизации в том, что удаляются примеси мышьяка, фтора и хлора, мешающие гидрометаллургическим процессам. В частности, присутствие мышьяка в растворе почти исключает применение цементационных способов извлечения индия, кадмия и других ценных компонентов. Такая высокотемпературная сульфатизация связана с образованием большого количества вредных газов. Поэтому иногда предпочитают сульфатизацию при низкой температуре ( 180°). Кек репуль-пируют с отработанным цинковым электролитом, пульпу подают в печь кипящего слоя, где она упаривается, гранулируется и сульфатизи-)уется. В этом случае весь мышьяк остается в сульфатном продукте 98]. [c.304]

    Вскрытие серной кислотой (рис. И). Отвальный вольфрамитовый кек обрабатывают 4 ч 98%-ной серкой кислотой (Т Ж = 1 1 ) при 220°, что обеспечивает практически полный переход скандия в воднорастворимое состояние. При выщелачивании водой сульфатизи-рованной массы в раствор вместе со скандием (0,2—0,3 г/л) переходит большая часть железа (15—25 г/л) и марганца (15—20 г/л), а также 2г, Т1, ТЬ, РЗЭ, А1, ЫЬ, Та и другие примеси. Железо и алюминий отделяют карбонатным методом, основанным на способности скандия образовывать комплексные карбонаты с содой и карбонатом аммония, растворимые в избытке соответствующего карбоната. Для этого сернокислые растворы после нейтрализации аммиаком до pH 2, 30— 40-минутного кипячения и отстаивания декантируют. Осадок отмывают горячей водой, объединяют основной и промывной растворы. Перемешивая, вливают объединенный раствор в 20%-ный раствор соды или карбоната аммония равного объема. После двухчасового отстаивания раствор, содержащий скандий, отделяют от осадка, в котором концентрируется большая часть Ре, Мп, Са. Осадок подвергают трехкратной репульпации 10%-ным раствором соды. Из объединенного раствора (основного и промывного) после подкисления соляной кислотой до pH 1 и кипячения (для удаления СОа) осаждают 5с(ОН)з, прибавляя концентрированный раствор аммиака. Прокаливая гидроокись при 850°, получают 40—70%-ную ЗсаОз. Дальнейшую очистку от примеси Т1, 2г, ТЬ и РЗЭ проводят экстракционными методами с применением различных экстрагентов. От А1 и Ве рекомендуется отделять 5с, осаждая его в виде оксалата. Скандий в виде окиси чистотой 99,99% извлекается на 80—88% [17]. [c.37]

    Исходные хлористые алкилы R 1 с длинной цепью углеродных атомов, необходимые для синтеза алкил-бензолов, получают обычно хлорированием фракции керосиновых дистиллятов, содержащих углеводороды со средним молекулярным весом, соответствующим доде-кану ijHje или тридекану iaHjg, Взаимодействием хлористого алкила с бензолом получают алкилбензол, который далее сульфируют концентрированной серной кислотой, 20%-ным олеумом или серным ангидридом (в жидком или парообразном виде). Серный ангидрид — наиболее удобный сульфирующий агент, так как при его применении сульфонат получается без примеси сульфата натрия, сокращается расход сульфирующего вещества и не образуется в больших количествах отработанная серная кислота. Наиболее эффективно процесс протекает прн сульфировании алкилбензола раствором серного ангидрида SO3 в жидком сернистом ангидриде SO2 при температуре —8° С. [c.275]


Смотреть страницы где упоминается термин Серная кислота концентрированные растворы, применение: [c.28]    [c.763]    [c.40]    [c.167]    [c.317]    [c.76]    [c.10]    [c.124]    [c.135]   
Химические источники тока (1948) -- [ c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы концентрированные

Серная кислота концентрированная как

Серная кислота применение

Серная кислота применение для концентрирования



© 2025 chem21.info Реклама на сайте