Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионный обмен и ионообменная хроматография

    Ионообменная хроматография — сорбционный динамический метод разделения смесей ионов на сорбентах, называемых ионо-обменниками. При пропускании анализируемого раствора электролита через ионообменник в результате гетерогенной химической реакции происходит обратимый стехиометрический эквивалентный обмен ионов раствора на ионы того же знака, входящие в состав ионообменника. Ионообменный цикл состоит из стадии поглощения ионов (сорбции) ионообменником (неподвижной фазой) и стадии извлечения ионов (десорбции) из ионообменника раствором, который проходит через сорбент (подвижная фаза или элюент). Разделение ионов обусловлено их различным сродством к ионообменнику и происходит за счет различия скоростей перемещения компонентов по колонке в соответствии с их значениями коэффициентов распределения. [c.223]


    Ионный обмени его применение. Изд. АН СССР, 1959, (319 стр.). Сборник статей различных авторов — крупных специалистов по ионному обмену. Отдельные статьи содержат сведения о классификации ионитов, их химическом составе и методах синтеза о теории ионного обмена и ионообменной хроматографии о применении ионитов в аналитической химии и технологии неорганических веществ, в промышленности, медицине о сорбции органических соединений. Каждая глава снабжена обширным библиографическим списком. [c.489]

    В 1947 г. Т. Б. Гапон, Е. Н. Гапон и Ф. М. Шемякин впервые осуществили хроматографическое разделение смеси ионов в растворе, объяснив его наличием обменной реакции между ионами сорбента и ионами, содержащимися в растворе. Так было открыто еще одно направление хроматографии — ионообменная хроматография, [c.10]

    Способность ионитов вступать в ионный обмен с находящимися в растворе электролитами широко используется в технике. Иониты применяются для обессоливания воды, удаления солей из сахарных сиропов, молока, вин, растворов лекарственных препаратов, для извлечения ионов при очистке сточных вод. Иониты применяются также в ионообменной хроматографии, в качестве высокоэффективных катализаторов многих химических процессов и др. [c.96]

    Между ионообменной хроматографией и молекулярной адсорбционной, рассмотренной в предыдущей главе, существует принципиальное различие. Если молекулярная адсорбционная хроматография основана на адсорбции поверхностью твердой фазы веществ из раствора, то в ионообменной хроматографии осуществляется стехиометрический эквивалентный обмен ионов раствора на ионы [c.99]

    В ионообменной хроматографии в качестве сорбента используются ионообменные смолы (иониты) — практически нерастворимые в воде и органических растворителях высокомолекулярные соединения, содержащие функциональные группы, способные к обмену ионами. Иониты разделяются на катиониты и аниониты. В катиони-гах ковалентно связанными являются анионные группы (50 ")т. R (СОО")т, а в анионитах — катионные, например (ЫН ) -Поэтому катиониты способны обменивать катионы своих ионогенных групп на катионы растворенных солей или водородные ионы [c.48]

    Ионообменная хроматография служит для разделения ионов и основана на различной способности разных ионов в растворе к обмену с ионитом (ионообменником), служащим неподвижной фазой. Обычно синтетический ионообменник представляет собой высокополимер (смолу), например поперечно-сшитый полистирол, содержащий различные функциональные фуппы. Для разделения катионов используют катиониты, анионов - аниониты. [c.294]


    Ионный обмен. Ионообменная хроматография оказалась пригодной как для отделения 5г от Са и Ва, так и для выделения 5г и его радиоизотопов из смеси элементов-продуктов деления ядер урана. [c.111]

    Современную радиохимию нельзя представить себе без ионного обмена (и, в частности, ионообменной хроматографии на смолах, бумаге, неорганических ионообменниках), который применяется в самых различных ее областях в масштабах от ультрамикроанализа до крупных промышленных установок. В настояшее время методом ионного-обмена успешно решены многие препаративные и технологические задачи получение радиоактивных индикаторов высокой радиохимической чистоты без носителя, концентрирование искусственных радиоактивных изотопов из атмосферных осадков и сбросных вод и др. Особое значение имеют ионный обмен и хроматография в аналитической химии радиоэлементов. Советские химики выполнили работы по качественному и количественному анализу смесей лантаноидов и трансурановых элементов (А. П. Виноградов, Д. И. Рябчиков, П. Н. Палей, К. В. Чмутов, [c.25]

    В настоящем пособии на основе многолетнего опыта преподавания хроматографии на кафедре аналитической химии химического факультета МГУ в сжатом виде излагается теория хроматографического разделения веществ и основы ионообменной, распределительной и газовой хроматографии. Описаны аппаратура, сорбенты, растворители, приемы проведения хроматографического эксперимента и приведены лабораторные работы по ионному обмену, ионообменной, распределительной, осадочной и газовой хроматографии, которые выполняются в практикуме по хроматографическому анализу на кафедре аналитической химии МГУ. [c.3]

    В зависимости от применяемого типа адсорбента и характера процесса, протекающего на адсорбенте, различают адсорбционную,- ионообменную, распределительную и осадочную хроматографию. При адсорбционной хроматографии первичным актом является молекулярная или ионная адсорбция. В случае распределительной хроматографии происходит распределение растворенных веществ между подвижными и неподвижными растворителями, причем адсорбент является веществом, удерживающим неподвижный растворитель. Ионообменная хроматография основана на обмене ионов между раствором и ионообменными веществами, в качестве которых могут служить природные и синтетические алюмосиликаты и синтетические смолы. Такие вещества содержат подвижные ионы металлов, водорода или гидроксила, способные к замещению. При этом процессе катион (в анионитах) или анион (в катионитах) представляет собой единое целое и не переходит в раствор при обмене. Ионообменная хроматография на искусственных смолах является основным методом адсорбционного разделения радиоактивных элементов, в частности-продуктов деления урана. Осадочная хроматография основана иа различии в произведениях растворимости соединений, образуемых разделяемыми ионами с раствором соединений, пропитывающих наполнитель колонки. Первичным актом при этом является образование осадков. [c.23]

    Ионообменная хроматография за последние годы стала одним из важнейших методов препаративного разделения и аналитического исследования смесей различных неорганических и органических соединений. Она основана на обратимом стехиометрическом обмене ионов, содержащихся в растворе, на ионы, входящие в состав ионо-обменника. Образование хроматограмм в этом случае происходит вследствие неодинаковой способности к обмену различных ионов хроматографируемого раствора. В ионообменной хроматографии, так же как и в адсорбционной, можно применять фронтальный, вытеснительный, элюентный методы анализа. [c.141]

    Ионный обмен и ионообменная хроматография широко используются в количественном анализе. С помощью ионитов можно производить очистку реагентов, концентрировать разбавленные растворы. В последнем случае через ионит пропускают разбавленный раствор, после чего поглощенные им ионы вытесняют сравнительно небольшим количеством того или иного реагента (например, кислоты). В полученном гораздо более концентрированном растворе определяют соответствующие ионы. [c.132]

    Проявительный метод является наиболее распространенным методом ионообменной хроматографии. Рассмотрим разделение смесн ионов В+, С+ и 0+ на ионите с противоионом А+, предположив, что по способности к обмену ионы располагаются в ряд А+<В+<С+< <0+ [c.109]

    По природе сорбента различают адсорбционную, распределительную (абсорбционную) и ионообменную хроматографии. В случае адсорбционной хроматографии сорбция происходит на поверхности твердого тела — адсорбента. В распределительной хроматографии компоненты абсорбируются жидкостью, нанесенной на твердый носитель. В ионообменной хроматографии сорбентом являются ионообменные смолы — полиэлектролиты, содержащие основные (—ЫНз —ЫН— —М=) или кислотные (—ЗОдН —СООН —5Н) группы, и процесс разделения основан на обратимом ионном обмене между ионообменной смолой и компонентами смеси. Ионообменная хроматография существует только в жидкостном варианте. [c.46]


    Разделение ионов. Методом элюентного анализа можно разделять ионы, используя их различную способность к полному обмену. Поскольку методика работы такая же, как в методе хроматографического разделения, этот метод называют ионообменной хроматографией. [c.250]

    Во всех перечисленных видах ионообменной хроматографии имеет место многократное повторение процессов ионного обмена, что является отличительной чертой хроматографического процесса. В зависимости от того, происходит ли обменная сорбция положительно заряженных ионов (катионов) или отрицательно заряженных ионов (анионов), ионообменники соответственно делятся на катиониты и аниониты. Существуют иониты, обладающие амфотерными свойствами. [c.142]

    Ионообменная хроматография основана на способности некоторых адсорбентов (ионитов) на обмен своих ионов на ионы, находящиеся в растворе. Для описанного опыта рекомендуется пользоваться специально приготовленной полутора-окисью алюминия, в состав которой входят ионы, способные, в частности, на обмен с катионами Си +, Со +, N1 +. [c.295]

    Своеобразие динамических условий осаждения компонентов смеси накладывает отпечаток на характер процесса образования осадочных хроматограмм, В практике часто используется следующий вариант ионообменно-осадочной хроматографии [154]. Через носитель, являющийся ионообменником (R) и насыщенный противоионом (например, катионами Ag+), пропускается раствор электролита (например, водный раствор КС1). Первая стадия сложного процесса — ионный обмен  [c.202]

    Обмен ионов между раствором и сорбентом Ионообменная хроматография Ионообменная тонкослойная хроматография Твердая фаза—жидкость Жидкость—жидкость Колоночная Плоскостная [c.9]

    XI. 3. ОБМЕН ИОНОВ В ДИНАМИЧЕСКИХ УСЛОВИЯХ И ИОНООБМЕННАЯ ХРОМАТОГРАФИЯ [c.684]

    В основе ионообменной хроматографии лежит обратимый сте-хиометрический обмен ионов анализируемого раствора на подвижные ионы — противоионы сорбентов, называемые ионообмен-никами (или ионитами). В качестве ионитов используют природные или синтетические смолы — твердые, нерастворимые в воде высокомолекулярные кислоты и их соли, содержащие в своем [c.108]

    Ионообменная хроматография. В ее основе лежит обмен ионами между раствором и адсорбентом. [c.169]

    По механизму взаимодействия сорбента и сорбата можно выделить несколько видов хроматофафии распределительнся хроматография основана на различии в растворимости разделяемых веществ в неподвижной фазе (газожидкостная матофафия) или на различии в растворимости веществ в подвижной и неподвижной жидких фазах ионообменная хроматография — на разной способности веществ к ионному обмену адсорбционная хроматография — на различии в адсорбируемости веществ твердым сорбентом эксклюзионная хроматография — на различии в размерах и формах молекул разделяемых веществ, аффинная хроматография — на специфических взаимодействиях, характерных дпя некоторых биологических и биохимических процессов. Существуют пары веществ, реагирующих в растворах с высокой избирательностью, например антитело и антиген, фермент и его субстрат или ингибитор, гормон и соответствующий рецептор, и т. п. Если одно из соединений пары удерживается ковалентной связью на [c.267]

    Светлов A. K., Крахмалец И. A., Кушпиков -Ю. A. и др. Изучение свойств новых полифункциональных серосодержащих ионитов. Тезисы докл. IV Всесоюз. науч. конф. по теории сорбционных процессов и применению ионообменных материалов.—В кн. Ионный обмен и хроматография. Воронеж, 1976, с. 97—98. [c.257]

    Методы очистки могут быть физическими либо химическими. Физические методы включают дистилляцию, сублимацию, испарение летучих примесей, рекристаллизацию из расплава, фракционную кристаллизацию, электролиз жидкостей или твердых веществ, жидкостную экстракцию, хроматографию, ионный обмен. Важнейшим из них и наиболее общим является предложенный Пфанном метод зонной плавки—частный метод перекристаллизации из расплава (далее мы обсудим его). Все остальные методы полезны в тех случаях, когда зонная плавка неэффективна, или же они используются в сочетании с методом зонной плавки, а область открывает простор для проявления изобретательности, здесь можно применить также такие современные методы, как ионный обмен и хроматография, не получившие пока широкого распространения в этой области. Например, проблема получения сверхчистого никеля с соотношением N1 Ре или N1 Со, равным 10 1, давно ждала своего решения. Вследствие сходства физико-химических свойств всех трех металлов зонная плавка была неэффективной, хотя этим методом удается хорошо очистить никель от всех других примесей. При такой концентрации железо и кобальт препятствуют исследованию энергетических зон никеля по причинам, аналогичным указанным в разд. 4.1 (так как примесные атомы действуют как центры рассеяния электронов). Однако в аналитической химии развиты методы ионообменного разделения железа, кобальта и никеля. Если железо и кобальт отделить от никеля этим способом в водном растворе соли, а затем никель электролитически осадить и подвергнуть зонной плавке, с тем чтобы отделить от других элементов, то можно получить металл высокой степени чистоты с содержанием примесей железа и кобальта в десять —сто раз меньшим, чем при любых других доступных методах очистки. [c.212]

    Классификация на основе природы элементарного акта. Если неподвижной фазой является твердое вещество, то элементарным актом взаимодействия анализируемого вещества (сорбата ) с твердой фазой (сорбентом) может быть 1) акт адсорбции— адсорбционная молекулярная хроматография 2) обмен ионов, содержащихся в твердой фазе, на ионы из раствора — ионообменная хроматография 3) химическое взаимодействие с образованием труднорастворимого осадка — осадочная хроматография. При адсорбционной молекулярной хроматографии жидких или газообразных веществ хроматографическое разделение основывается на различии адсорбционного сродства между компонентами разделяемой смеси и веществом твердой фазы, называемым в данном случае адсорбентом. Этот вариант хроматографии относится к классическому цветовскому варианту. [c.12]

    Одним из первых хроматографических методов, нашедших практическое применение, был метод ионообменной хроматографии. В его основе лежит обратимый стехиометрический обмен ионами, содержащимися в растворе, т. е. в жидкой подвижной фазе, на ионы твердых или жидких веществ — неподвижной фазы. Такие вещества, обладающие подвижными ионами, способными к обмену, называются ионитами или ионообмечниками. Они могут быть как твердыми, так и жидкими веществами. В большинстве случаев в ионообменной хроматографии применяются твердые ионообменни-ки. Поэтому здесь рассмотрена лишь хроматография на твердых ионитах. [c.99]

    Как показывает название, в основе адсорбционной хроматографии лежит адсорбция разделяемых веи еств на твердой поверхности выбранного адсорбента. Адсорбция обусловлена или физическими ван-дер-ваальсовыми силами межмолекулярного взаимодействия в системе адсорбат—адсорбент (молекулярная хроматография), или силами химического сродства, действующими, например, в процессе реакции при обмене ионов разделяемых компонентов на поверхностные ионы применяемого ионообменного адсорбента (ионообменная хроматография). В обоих случаях главным условием для осуществления разделения должно быть различие энергии адсорбции разделяемых веществ, что равносильно различию коэффициентов адсорбции. [c.11]

    Ионообменная хроматография основана на обратимом обмене содержащихся в растворе ионов иа ионы, входящие в состав ионообмен-ника. Образование хроматограмм при этом происходит вследствие различной способности к обмену иоиов хроматографируемого раствора. [c.284]

    Ионообменная хроматография. Сорбенты — природные или синтетические, неорганические или органические твердые ионоо бменники (иониты) разделение обусловлено различной способностью к обмену ионов хроматографического раствора на эквивалентное количество одноименно заряженных подвижных ионов (противоионов) в составе ионита, оно обусловлено различиями в величинах констант обмена разделяемых ионов анализируемого раствора. [c.8]

    Теория ионообменной хроматографии сложна вследст вие многообразия химических и физических явлений, характерных для обменного поглощения ионов на ионообменных сорбентах. В соответствии с природой этих явлений она слагается из статики (равновесия), кинетики и динамики ионообменных процессов. Ниже рассматриваются элементы теории ионообменно-хроматографического метода [c.172]

    Практическое применение ионный обмен и иониты нашли при решении таких важных задач, как обессоливанне, замена одного иона на другой (ионообменный синтез), разделение сложных смесей с целью очистки, анализа или препаративного выделения тех или иных веществ (ионообменная хроматография). [c.684]

    Этот метод обобщен и использован для расчета молекулярной и ионообменной хроматографии В. В. Ра-чинским [3], давшим теоретическое описание динамики обменной сорбции однозарядных ионов при стационарном режиме и указавплим на возможность использования этого метода для решения задач динамики обменной сорбции с разной зарядностью нонов [17—19]. [c.147]

    В ионообменной хроматографии происходит обмен между находящимися в растворе ионами и ионами адсорбента. Адсорбенты (смолы), поглощающие из раство]за катионы, называют катиони-пшми, а поглощающие анионы — анионитами. Прои.ессы, проте- [c.267]

    Методы ионообменной хроматографии развивались американскими химиками в годы второй мировой войны при разделении продуктов ядерных реакций. Сами же ионообменники (в том числе и сю1тетические ионообменные смолы) были известны еще раньше, так же, как и ряд работ по ионообменным процессам. В 1947 г. отечественные ученые Т. Б. Гапон, Е. Н. Гапон и Ф. М. Шемякин применили ионный обмен для разделения смеси ионов в растворе с помощью сорбентов. [c.49]


Библиография для Ионный обмен и ионообменная хроматография: [c.10]   
Смотреть страницы где упоминается термин Ионный обмен и ионообменная хроматография: [c.645]    [c.278]    [c.428]    [c.221]    [c.100]    [c.100]    [c.13]    [c.67]    [c.29]    [c.300]    [c.428]    [c.265]   
Смотреть главы в:

Хроматография неорганических веществ -> Ионный обмен и ионообменная хроматография




ПОИСК





Смотрите так же термины и статьи:

Ионная хроматография

Ионный обмен

Ионный обмен и иониты

Ионный обмен и ионообменная хроматография при анализе природных вод, почв, растений на содержание гербицидных остатков и микроэлементов

Ионный обмен хроматографии

Ионообменная хроматографи

Лабораторные работы Ионный обмен и ионообменная хроматография

Обмен ионов

Обмен ионов в динамических условиях и ионообменная хроматография

Применение ионного обмена и ионообменной хроматографии

Хроматография ионно-обменная

Хроматография ионообменная

Хроматография на ионитах



© 2025 chem21.info Реклама на сайте