Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярно-орбитальная теория ЭДА-комплексов

    МОЛЕКУЛЯРНО-ОРБИТАЛЬНАЯ ТЕОРИЯ ЭДА-КОМПЛЕКСОВ [c.19]

    Молекулярно-орбитальная теория косвенного обмена является ключом к пониманию противоположной природы ферромагнетизма и антиферромагнетизма биядерных и полиядерных мостиковых комплексов. Типичные комплексы такого рода содержат ионы металла, имеющие по две мости-ковые связи с атомами, несущими неподеленные пары (например, кислородом и азотом). В качестве примера можно привести ядерные комплексы [43—45] [c.231]


    Если удастся разработать общую структурную теорию с использованием молекулярно-орбитального подхода, станет возможным предсказание структур активированных комплексов для элементарных реакций простых молекул. По набору МО неустойчивого активированного комплекса будет возможным предсказать характер его распада. Это эквивалентно предсказанию пути, каким он образуется из реагентов, поскольку необходимо только повернуть координату реакции в обратном направлении. Из теории возмущений мы видели, что потенциальная энергия молекулы всегда имеет экстремальную величину, когда расположение ядер таково, что возникают элементы симметрии. Если энергия минимальна, кон-7  [c.179]

    Описание теории кристаллического поля и иллюстрации приводятся в следующем разделе. Затем рассматривается более полный метод молекулярных орбиталей. После этого электронные свойства комплексов переходных металлов обсуждаются в терминах орбитального расщепления , которое теория кристаллического поля позволяет определить относительно легко. [c.415]

    Осл. исследования посвящены квантовой химии. Заложил (1952) основы теории граничных орбиталей рассчитал плотности граничных п-электропов у углеродных атомов бензола и нафталина и показал, что их значения и распределение определяют реакционную способность молекул. Развил (1954—1957) представлепия о формировании переходного состояния, или активированного комплекса, как взаимодействия электронов вновь образующейся связи реакционный центр — атакующий реагент с остальной сопряженной системой. Применил (1960—1962) теорию граничных орбиталей к расчетам (т-электропной плотности алифатических углеводородов, энергии их диссоциации, колич. характеристик устойчивости алифатических ионов и радикалов. От оценки реакционной способности по индексам электронных зарядов перешел (с 1965) к расчетам энергий взаимодействия реагирующих молекул и структуры активированных комплексов методами самосогласованного поля и конфигурационного взаимодействия с выделением орбитальных вкладов в это взаимодействие. Развил (1970-е) теорию граничных молекулярных орбиталей в применении к р-циям с многоцентровыми активированными комплексами и к различным каталитическим р-циям. [c.467]

    Молекулярно-орбитальная теория помогла объяснить еще одно важное явление. Известно, что при реакции Дильса — Альдера преи.мущественно образуются эн<5о-аддукты, хотя они обычно менее устойчивы термодинамически. Рассмотрение взаимодействия г>рбиталей при эндо- и экзо-подходе (рис. ХХП-5) показывает, что в случае э ( о-присоединения появляются дополчите,1ьные благоприятные взаимодействия орбиталей, которых нет при экзо-пути [13, 1972, т, 72, с. 157 54, 1983, т. 39, с. 2095]. Это взаимодействие вызывает понижение энергии активированного комплекса, приводящего к энс о-аддукту, и образование последнего становится преобладающим. [c.542]


    Возникающая в результате образования молекулярных орбиталей комплекса диаграмма энергетических уровней изображена на рис. 20-14. В ее нижней части находятся уровни шести связывающих орбиталей, заполненные электронными парами. Их можно пр)едставить как шесть электронных пар, поставляемых лигандами-донорами, и больше не обращать на них внимания. Точно так же можно исключить из рассмотрения четыре верхние разрыхляющие орбитали, являющиеся пустыми, за исключением предельных случаев сильного электронного возбуждения, которыми можно пренебречь. Несвязывающий уровень и нижний разрыхляющий уровень соответствуют двум уровням, и вд, к которым приводит расщепление кристаллическим полем (см. рис. 20-13). Мы будем продолжать называть их по-прежнему уровнями 12д и е даже в рамках молекулярно-орбитального подхода. Но важно отметить разницу в объяснении расщепления между этими уровнями. В теории кристаллического поля оно является следствием электростатического отталкивания, а в теории поля лигандов-следствием образования молекулярных орбиталей. Как мы убедились в гл. 12 на примере молекул НР и КР, теория молекулярных орбиталей позволяет охватить все случаи от чисто ионной до чисто ковалентной связи. Поэтому выбор между теорией кристаллического поля и теорией поля лигандов основан лишь на рассмотрении одной из двух предельных моделей связи. В комплексе СоР довольно заметно проявляется ионный характер связи, потому что, как можно видеть из рис. 20-14, орбитали лигандов располагаются по энергии ниже орбиталей металла и ближе к связывающим молекулярным орбиталям. Поэтому связывающие молекулярные орбитали по характеру должны приближаться к орбиталям лигандов, а это должно обусловливать смещение отрицательного заряда в направлении к лигандам. Таким образом, связи в данном случае должны быть частично ионными. [c.235]

    Теория Вудворда — Хофмана обьгано излагается для уже упоминавшихся реакций. В книге Пирсона охвачен значительно больт ший круг реакций, включаюш ий, в частности, реакции комплексов переходных металлов, что особенно важно в связи с развитием ме- таллокомплексного катализа, а также многие фотохимические реакции. Последовательно используя теорию симметрии (теорию групп), автор широко применяет теорию возмущений в рамках молекулярно-орбитального приближения и привлекает к рассмотрению всю возможную совокупность данных о топологии потенциальных поверхностей, о влиянии возбужденных состояний (на базе представлений о конфигурационном взаимодействии), о проявлениях эффектов Яна — Теллера первого и второго порядков и т. д. Он достаточно полно использует данные современных неэмпирических расчетов структур переходных состояний и путей реакций, а также структур молекул реагентов и продуктов реакции. [c.7]

    В зависимости от силы кристаллического поля комплексы с конфигурацией сР бывают двух типов высокоспиновые и низкоспиновые. Данные ЭПР для высокоспиновых комплексов с конфигурацией d представлены в табл. 23. Хеннинг, ван ден Бум и Дилеман [785] установили, что ион металла имеет почти изотропные значения g -п А, если он находится в тетраэдрическом или кубическом кристаллическом поле. Когда поле октаэдрическое, к основному состоянию примешиваются два орбитальных триплета P Ti) и / ( T i). Поскольку необходимо знать дополнительный параметр (процент примеси Р в F), нужно проводить полное оптическое исследование, прежде чем появляется возможность применить параметры ЭПР для расчета коэффициентов в молекулярных орбиталях. Теория ЭПР для случая октаэдрического поля развита Абрагамом и Прайсом [842], Лоу [825] и Торнлеем, Виндзором и Оуэном [852]. Сверхтонкие расщепления от лигандов трудно интерпретировать вследствие необходимости знать коэффициенты [c.117]

    Двумя основными методами в теории химической связи являются метод валентных связей и метод молекулярных орбиталей . Известно, что, несмотря на внешнюю разницу в подходах, эти методы но суш еству отличаются исходными позициями приближения к более разработанным формам, в которых они становятся идентичными. А именно, в методе валентных связей преувеличивается, а в методе молекулярных орбиталей недооценивается электронная корреляция (снижение вероятности одновременного нахождения двух электронов в одном и том же месте, вызванное межэлектронным отталкиванием). Естественно поэтому, что оба метода в большинстве случаев приводят к согласуюш имся выводам. Однако, несмотря на отсутствие принципиальной разницы, между обоими методами существует большая разница с точки зрения их практического использования. Сравнительная простота молекулярно-орбитальных расчетов привела к их подавляющему чрличественному преобладанию. А это обстоятельство привело в свою очередь к использованию метода молекулярных орбиталей и в качестве языка для обсуждения свойств молекул, не опирающегося на проделанный расчет. Между тем в качестве основы для создания такого языка метод валентных связей обладает несомненным преимуществом. Действительно, концепция резонанса — основанная на методе валентных связей качественная теория химического строения — оперирует, с соблюдением определенных правил , валентными структурами. В выборе валентных структур и в суждении о них можно руководствоваться химической интуицией, поскольку они представляют собой пусть фиктивные, но молекулоподобные многоэлектронные системы. Напротив, в качественных рассуждениях, использующих молеку-лярщде орбитали, интуиция химика, опирающаяся на звание свойств молекул и химических связей, а не орбиталей, бессильна. И все же при обсуждении свойств органических комплексов переходных металлов предпочтение отдается молекулярно-орбитальному языку, а не языку теории резонанса. Объясняется это непомерно большим числом резонансных структур, необходимых для резонансного описания комплексов .  [c.10]


    Электронные спектры комплексов переходных металлов можно интерпретировать с помощью теории кристаллического поля. При обсуждении комплексов 0 мы будаЛ заниматься системами с локальной симметрией О,,, хотя симметрия всей молекулярной системы может быть и не такой. При описании типа расположения донорных атомов, непосредственно связанных с металлом, мы не будем строго придерживаться терминов симметрии и не будем учитывать остальные атомы лигандов. Естественно, такое допущение не всегда оправдано. В данном разделе мы рассмотрим, как интерпретировать и предсказывать электронные спектры и как опенить величины наблюдаемого -орбитального расщепления. Мы должны дать представление об эффективном методе координационной химии — использовании электронных спектров при рещснин структурных проблем. Все эти вопросы более подробно обсуждаются в ряде монографий, в которых ссылки на работы, содержащие спектры многих комплексов [1. 2, 4, 5, 9, 10, 12]. [c.88]

    Долгое время П. м. были, основными методами квантовохим. вычислений. С развитием вычислит, техники их постепенно вытесняют более фундаментальные неэмпирине-ские методы расчета. Однако для исследования сложных многоэлектронных молекул значение П. м. пока сохраняется. М. В. Базилевский. ПОЛЯ ЛИГАНДОВ ТЕОРИЯ, вариант молекулярных орбиталей метода, используемый для расчета энергии и электронной структуры высокосимметричных молекул, прежде всего комплексов переходных металлов. Основана на понятиях орбиталей и теоретико-групповом подходе, при к-ром, напр., сначала из nd-, (п -Ь l)s- и (м + 1)р-орбиталей центр, атома и отдельно из а- и я-орбиталей лигандов строят орбитали симметрии комплекса. С помсщью найденных т, о. орбиталей одного и того же типа симметрии определяют мол. орбитали (МО) как линейные комбинации орбиталей симметрий и соответствующие им орбитальные энергии. В Качеств, вариантах П. л. т. расположение уровней орбитальных энергий определяется с учетом того, сильно или слабо перекрываются орбитали центр, атома и орбитали лигандов, а также с учетом характера перекрывания (связывающего или антисвязывающего). Прн модельных количеств, расчетах получают схему расположения по энергии МО разл. типов симметрии, а также устанавливают тенденции в изменении этой схемы при вариации поля лигандов, изменении числа -электронов у центр, атома, учете я-электронов лигандов и г. п. [c.473]

    В 1937 г. Ян и Теллер сформулировали важную для стереохимии теорему, которая гласит если орбитальное состояние какого-либо иона вырождено по симметрии, лиганды в комплексе будут действовать на него до тех пор, пока ион не примет конфигурацию, соответствуюищю более низкой симметрии и меньшей энергии и снимаюгцую тем самым вырождение. Более общую теорему, выдвинутую Яном, можно сформулировать следующим образом. Вырожденное электронное состояние как орбитальное, так и спиновое) нелинейной молекулярной системы неустойчиво, для стабилизации такая система должна подвергнуться искажению, снимаюи гму вырождение. [c.440]

    Изложена современная теория межмолекулярного донорно-акцептор-ного взаимодействия. Рассмотрен вопрос о соотношении сил, стабилизирующих молекулярные комплексы. Обоснованы методы определения наиболее важных параметров, характеризующих природу межмолеку-лярной связи и свойства комплексов. Особое внимание уделено получению достоверных данных для систем со сложными равновесиями при участии полифункциональных соединений. Обобщены результаты физико-химических исследований молекулярных комплексов, в том числе комплексов с межмолекулярной водородной связью (термодинамические параметры, дипольные моменты, спектральные свойства). Рассмотрены результаты теоретических и экспериментальных исследований, характеризующих структурную, зарядовую и орбитальную перестройку молекул в процессе межмолекулярного взаимодействия. На конкретных примерах иллюстрируется роль комплексообразования в химических реакциях. [c.16]


Смотреть страницы где упоминается термин Молекулярно-орбитальная теория ЭДА-комплексов: [c.164]    [c.303]    [c.547]    [c.473]    [c.401]    [c.97]   
Смотреть главы в:

Донорно-акцепторная связь -> Молекулярно-орбитальная теория ЭДА-комплексов




ПОИСК





Смотрите так же термины и статьи:

Комплексы молекулярные



© 2025 chem21.info Реклама на сайте