Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная подвижность в полимерах

    ПММА 120° С) проходит через максимум. Наличие этого максимума, находящегося в температурном интервале стеклования, показывает, что термическое разрушение остаточной поляризации, образовавшейся в ПММА, непосредственно связано с сегментальной формой теплового движения в полимере [65]. Известно, что в том же температурном интервале (рис. 7.14) находятся и максимумы диэлектрических и механических потерь ПММА (а-процессы). Они также связываются с сегментальной подвижностью в полимере, проявляющейся в условиях действия переменных механических и электрических полей. Расхождение в значениях энергий активации для процесса а-релаксации в ПММА, полученных методом термодеполяризации и методом диэлектрических потерь, могут быть объяснены спецификой обоих методов и особенностями молекулярного движения в полимере при температурах выше и ниже 7 с. Из данных рис. 7.15 видно, что разные физические методы позволяют фиксировать проявление одних и тех же процессов молекулярной подвижности в полимерах в различных температурно-частотных диапазонах, т. е. дают взаимодополняющую информацию. [c.199]


    Особенности строения макроцепей и многообразие форм молекулярной подвижности в полимерах приводят к множеству релаксационных процессов, каждый из которых связан с движением кинетических единиц определенного вида и может быть описан спектром времен релаксации. Времена релаксации, связанные с подвижностью крупных отрезков цепи, могут быть довольно большими. Соответствующие им релаксационные процессы протекают медленно. Мелкомасштабные движения макроцепей, обеспечивающие образование дырок , ускоряют релаксационные процессы. Приближенный расчет времени релаксации таких быстрых процессов при объемной деформации некоторых полимеров (сополимеров), выполненный в работах [16—18], показывает, что при проникновении низкомолекулярного компонента в полимер проницаемость последнего контролируется перемещением структурных элементов макроцепей только в начальный период процесса набухания (время релаксации 10 — 10 с). [c.297]

    На основании исследования процессов молекулярной подвижности в полимерах разных классов различными физическими методами релаксационной спектрометрии произвольный полимер мож  [c.142]

    ПРИМЕНЕНИЕ МЕТОДА РАДИОТЕРМОЛЮМИНЕСЦЕНЦИИ ДЛЯ ИЗУЧЕНИЯ молекулярной ПОДВИЖНОСТИ В ПОЛИМЕРАХ [c.242]

    Олигоэфиракрилаты, содержащие Две ненасыщенные связи на концах молекул олигомера, в присутствии инициаторов достаточно легко полимеризуются с образованием трехмерного полимера. В образующихся продуктах концентрация узлов трехмерной сетки сравнительно высокая, соответственно и молекулярная подвижность в полимере сильно заторможена. В то же время непрореагировавшие олигомерные блоки сохраняют достаточно высокую подвижность. Этим и объясняется то обстоятельство, что в таких по-лимер-олигомерных системах имеются два времени Та, отличающиеся на несколько порядков. Населенности в фазах, как и в слу- [c.231]

    Исследования клеточного эффекта в полимерах немногочисленны. В полимере клетка формируется сегментами макромолекул, диффузия радикалов из клетки зависит не от макроскопической вязкости среды, а от сегментальной подвижности. Поэтому вероятность выхода радикалов в объем целесообразно сопоставлять с молекулярной подвижностью радикалов. Последнюю можно оценить методом спинового зонда [19]. Поскольку молекулярная подвижность в полимерах на 2-3 порядка меньше, чем в жидкости, клеточный эффект в полимерах проявляется более ярко. Действительно, в полимерах е = 0.01+0.1, в жидкой фазе е = 0.3 + 0.8. [c.204]


    Для изучения различных видов молекулярной подвижности в полимерах используют температурную зависимость второго момента спектральной линии АНг [20]. Если полимер, охлажденный до очень низкой температуры, постепенно нагревать, то величина второго момента уменьшается по мере размораживания каждого вида молекулярного движения. Естественно, что наиболее заметное снижение наблюдается при размораживании сегментального движения, т.е. при переходе полимера из стеклообразного в высокоэластическое состояние. Определение температурной области, в которой происходит значительное уменьшение величины АНг , является одним из способов идентификации области стеклования и относится в большей степени к аморфным полимерам. [c.269]

    Ширина линии уменьшается при увеличении <рг, такую зависимость можно ожидать в сетчатых полимерах при низких температурах (ниже Тс). Аномальное уменьшение ширины линии при низких температурах связано с тем, что увеличение числа поперечных связей препятствует сокращению расстояния между кинетическими элементами соседних цепей при понижении температуры полимера. Поэтому молекулярная подвижность в полимерах с большим значением (р ниже Тс будет более интенсивной, чем в слабосшитом полимере. [c.514]

    Исследование растворов полимеров позволяет варьировать большое число параметров системы (молекулярный вес полимера, вид растворителя, его вязкость, концентрацию полимера в растворе и т. д.). Сравнительное изучение различных характеристик таких систем позволяет проводить более широкие модельные эксперименты для выяснения природы молекулярной подвижности в полимерах, подобно тому как это проделано в работах [200, 201] для спин-меченого полистирола. [c.195]

    Метод ЯМР позволяет наблюдать изменение структуры и молекулярной подвижности в полимерах, вызываемое процессами сшивания цепей — вулканизацией, отверждением смол и т. д. [c.275]

    В простейшем виде идея этих методов состоит в такой структурно-физической модификации материала, которая подавляет молекулярную подвижность в полимере, особенно маломасштабные, высокочастотные движения, ответственные за химические реакции. Снижение молекулярной подвижности уменьшает химическую реакционную способность и повышает стабильность материала. Правда, такая модификация неизбежно сопровождается изменением релаксационного спектра полимера-и изменением механических, диэлектрических и других динамических свойств. Часто, однако, это обстоятельство не имеет решающего значения (например, в полимерных покрытиях магистральных трубопроводов). Кроме того, за химические реакции и динамические свойства ответственны различные частотные области релаксационного молекулярного спектра маломасштабные и высокочастотные движения важны для реакций, а более крупномасштабные и низкочастотные движения обеспечивают динамические свойства. Идеальной с точки зрения стабилизации является такая структурно-физическая модификация полимера, которая подавляет маломасштабные движения, но не затрагивает крупномасштабные это могло бы обеспечить и химическую стабильность, и сохранность динамических свойств. Конечно, такой идеальный результат трудно реализовать, однако возможности этого подхода к стабилизации еще мало исследованы. [c.148]

    Особенности строения макромолекул и многообразие форм молекулярной подвижности в полимерах приводит к набору релаксационных процессов, каждый из которых связан с тепловым движением кинетических единиц определенного вида и может быть описан спектром времен релаксации. Времена релаксации, связанные с подвижностью крупных отрезков макромолекулы, например сегментов, а тем более с подвижностью элементов надмолекулярной структуры, могут быть довольно большими. Соответствующие им релаксационные процессы протекают медленно. Мелкомасштабные движения макромолекул обеспечивают более быстрые релаксационные процессы. В связи с широкой шкалой времен релаксации большая часть физических свойств полимеров имеет релаксационную природу. Так, релаксационный характер носят все механические свойства, а также электрические (диэлектрическая проницаемость, электропроводность), магнитные (магнитная восприимчивость и проницаемость). [c.4]

    При температуре выше Т , т. е. в высокоэластическом состоянии, молекулярная подвижность в полимерах становится настолько большой, что структура полимера в ближнем порядке успевает перестраиваться вслед за изменением температуры, а макромолекулы могут изгибаться под действием внешних сил. Общая деформация полимера в высокоэластическом состоянии складывается из мгновенной упругой и запаздывающей высокоэластической деформации. Напомним, что упругая деформация обусловлена изменением средних межатомных и межмолекулярных расстояний и деформацией валентных углов полимерной цепи, а высокоэластическая — ориентацией и перемещением звеньев гибких цепей. Высокоэластическое состояние используется при формовании изделий такими методами, как штампование, вакуумное формование и др. Если при температуре эксплуатации полимеры находятся в высокоэластическом состоянии, то из них можно изготовлять пленки, гибкие шланги, искусственную кожу. [c.7]


    К ков принцип исследования молекулярной подвижности в полимерах по данным метода ЯМР  [c.276]

    Молекулярная подвижность в полимерах и их физические состояния. В ряду макроскопических свойств полимерных материалов, определяющих области их применения, особая роль принадлежит механическим свойствам. Они у полимеров являются уникальными, не характерными для обычных низкомолекулярных веществ. Это обусловило выделение высокомолекулярных соединений в особый класс материалов, поведение которых не может быть охарактеризовано на основе обычных представлений об агрегатных состояниях вещества. Как известно, в молекулярной физике эти состояния определяют в зависимости от интенсивности и характера теплового движения его основных структурных и кинетических единиц. В случае низкомолекулярных веществ оба типа единиц совпадают, для полимеров же такое совпадение не имеет места. --Их- структурной единицей является макромолекула, но перемещение макромолекулы — это не единовременный акт, а совокупность последовательных перемещений отдельных сравнительно независимых субчастей цепи — кинетических сегментов. Такой сегмент, содержащий от нескольких единиц до нескольких десятков мономерных звеньев, и является основным типом кинетических единиц в полимере. [c.39]

    Для детального изучения механизма релаксационных явлений протекающих в полимерных системах, применяют разные диэлектрические методы, относящиеся к методам релаксационной спектрометрии . Для частот V 10 Гц прямые измерения диэлектрических потерь связаны с большими экспериментальными трудностями. При изучении молекулярной подвижности в полимерах диэлектрическим методом в частотном диапазоне 10 —10 Гц применяют метод постоянного тока. С этой целью используют данные по температурным зависимостям термодеполяризацианных токов I, функции деполяризации 11) и других параметров, зависящих от сквозного тока. [c.254]

    Процессы релаксации в полимерах, характеризующие переход системы из неравновесного в равновесное состояние, определяются молекулярной подвижностью (движением различных по размерам кинетических единиц). Полимеры могут рассматриваться как сложные системы, состоящие из ряда слабо взаимодействующих подсистем. Каждая подсистема состоит из однотипных кинетических единиц (релаксаторов). Из-за наличия характерной для полимеров структурной неоднородности эти релаксаторы находятся в разных условиях и их подвижность не может быть полностью описана схемой с одним наивероятнейшим временем релаксации. Использующиеся для количественного описания процессов молекулярной подвижности в полимерах дискретные и непрерывные спектры приводят к эквивалентным результатам. Однако при изучении механизмов медленных релаксационных процессов, связанных с флук-туационными надмолекулярными образованиями (различного вида микроблоками), дискретный спектр дает большую информацию. Перспективно использование дискретного спектра и при анализе других процессов релаксации, обусловленных локальной подвижностью. В то же время для процессов, связанных с сегментальной подвижностью, предпочтительнее использование непрерывного спектра, так как при этом на нем проявляется максимум, высота и ширина которого являются дополнительными к lgTг параметрами, характеризующими их особенности. [c.145]

    Изучение зависимости формы линии ЯМР от температуры позволяет судить о характере межмолекулярных сил, которые определяют молекулярную подвижность в полимере. Роль межмолекулярных сил наглядно проявляется, например, в изменении формы кривых 6Я= / (<) с увеличением числа Hj-rpynn между амидными группами в ряду полиамидов (рис. 95). [c.224]

    В книге приведены современные взгляды на процесс возникновения электрических зарядов и электретного эффекта в полимерах систематиаированы технологические приемы изготовления электретов, рассмотрены пьезоэлектрические свойства электретов и основы применения электретно-термического анализа для изучения релаксационных явлений в полимерах. Систематизированы экспериментальные данные о взаимосвязи молекулярной подвижности в полимерах и их диэлектрических свойств со свойствами полимерных электретов. Указаны основные области применения электретов. [c.2]

    Из анализа ширины линий ЭПР радикалов в кристаллических и стеклообразных полимерах можно определять частоты молекулярных и сегментальных движений. По сужению линий ЭПР макрорадикаЛов найдены температурные области фазовых переходов, области размораживания движения боковых групп и сегментальных движений и частоты этих движений. Так, для макрорадикалов полиизобутилена —С(СНз)2СНС(СНз)2— в интервале 77—220 К частота движений, усредняющих анизотропное СТВ неспаренного электрона с а-протоном, равна 3-10 ехр(—2000/i r) " [40]. В полиформальдегиде размораживание молекулярных движений и сужение линий ЭПР радикала ОСНО происходят при более низких температурах и энергия активации этих движений, по-видимому, ниже [41]. Однако такой способ исследования молекулярной подвижности в полимерах неприменим при высоких температурах, когда макрорадикалы быстро гибнут. Для исследования высокотемпературной молекулярной подвижности разработаны методы парамагнитного зонда и спиновых меток [42, 43]. [c.43]


Библиография для Молекулярная подвижность в полимерах: [c.183]   
Смотреть страницы где упоминается термин Молекулярная подвижность в полимерах: [c.322]   
Физика полимеров (1990) -- [ c.179 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная подвижность



© 2025 chem21.info Реклама на сайте