Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость и катализ мутаротации

    СКОРОСТЬ и КАТАЛИЗ МУТАРОТАЦИИ [c.64]

    Кислоты и основания ускоряют мутаротацию если любой из ано-меров растворить в бензоле н добавить смесь фенола и пиридина, то мутаротация происходит очень быстро. Изучение кинетики реакции показывает, что скорость процесса зависит от концентраций фенола, пиридина, а также тетраметилглюкозы это позволяет сделать вывод, что фенол и пиридин действуют совместно как кислотный и основной катализаторы. Далее установлено, что если функциональные группы фенола (кислотную) и пиридина (основную) ввести в одну молекулу, как это имеет место в случае а-пи-ридона (а-оксипиридина), то образуется значительно более эффективный катализатор, хотя каталитические группы в а-пиридоне являются существенно менее сильными, чем в феноле и пиридине, по своим кислотным и основным свойствам. Полагают, что катализ мутаротации а-пиридоном протекает следующим образом  [c.293]


    Скорость многочисленных реакций, катализируемых слабыми кислотами и основаниями, зависит не только от концентрации ионов растворителя, но и от концентрации всех присутствующих в растворе доноров и акцепторов протонов. Классическими примерами таких реакций являются разложение нитра-мида, иодирование ацетона и мутаротация глюкозы. Наблюдаемый в этом случае общий кислотно-основной катализ отличается от специфического катализа тем, что в выражение для скорости реакции входят члены, содержащие концентрации всех имеющихся в растворе доноров и акцепторов протонов. [c.85]

    Мутаротация глюкозы представляет собой реакцию, в которой проявляется общий кислотно-основной катализ (табл. 3). Скорость мутаротации изучена на основании целого ряда экспериментальных методов. Изменение удельного вращения плоскости поляризации от [а]д = 113° для свежих растворов а-глюкозы до 52° для равновесной смеси [c.54]

    Методы, используемые для расчета отдельных констант скоростей каталитических реакций при мутаротации, могут быть применены, с соответствующими изменениями, к другим реакциям. Некоторые из них показывают общий кислотный и основной катализ, тогда как другие обнаруживают либо общий кислотный, либо общий основной катализ несколько таких примеров приведено в табл. 3. [c.56]

    Кинетика мутаротации а-глюкозы и Р-глюкозы в воде имеет первый порядок. Наблюдаемая константа скорости определяется общим выражением для кислотно-основного катализа  [c.295]

    Мы уже упоминали об этой реакции, с которой начались все систематические кинетические исследования вообще. При постоянно температуре, давлении и концентрации кислоты по данным поляриметрии, химического анализа, дилатометрии и калориметрии реакция мономолекулярна по сахарозе. Наблюдаемая константа скорости первого порядка растет с повышением концентрации ионов водорода, хотя и не строго пропорционально. Каталитический коэффициент /ск = = /с/сн+ несколько увеличивается с ростом сн+ и концентрации сахара. Скорость гидролиза не зависит от присутствия недиссоциированных кислот и ионов, отличных от ионов водорода. Таким образом, в данном случае мы имеем дело со специфическим катализом ионами водорода. Каталитический коэффициент для ионов дейтерия к Сц+ превышает /с/сн+ в 1,80 раз нри 18,71 °С и в 1,55 раз при 37,13 °С [55, 56], в отличие от реакции мутаротации глюкозы, для которой это отношение равно 0,64 (25 °С). Известно, что последняя из названных реакций относится к случаю общего (неспецифического) катализа. По-видимому, нри экспериментальных отношениях А б+//сн+ < 1 процесс относится к общему кислотно-основному катализу, а прн отношениях, превышающих единицу, имеет место специфический катализ ионами водорода. Для гидролиза сахарозы уже давно был предложен следующий механизм  [c.320]


    Растворение тетраметилглюкозы в хлороформе не сопровождается мутаротацией. Добавление пиридина или п-крезола приводит к мутаротации, протекающей с очень небольшой скоростью. Однако при одновременном внесении пиридина и п-кре-зола скорость мутаротации значительно увеличивается. (В воде мутаротация глюкозы может протекать как спонтанно, так и по механизму кислотного или основного катализа). Таким образом, можно предположить, что в неводных растворителях мутаротация тетраметилглюкозы катализируется как обобщенной кислотой, так и обобщенным основанием. Результаты, полученные Свейном и Брауном [86] при изучении мутаротации тетраметилглюкозы, катализируемой рядом реагентов, приведены в табл. 1-7. [c.49]

    Некоторые примеры зависимости Ig at от pH реакций со специфическим кислотно-основным катализом приведены на рис. 9.2. Гидролиз сложных эфиров соответствует кривой 1 из рисунка видно, что каталитическое действие на него оказывают и кислоты и основания. Инверсия сахара, как следует из кривой 2, катализируется только кислотами альдольная конденсация ацетальдегида —только основаниями (кривая 3) кривая 4 показывает, что для мутаротации глюкозы существует интервал значений pH, в котором кислотные и основные катализаторы на скорость реакции не влияют. [c.144]

    Из этого уравнения следует, что как фенол, так и пиридин (или фенольный или пиридиниевый ионы) необходимы для образования переходного состояния и действуют, по-видимому, одновременно в качестве кислоты и основания. Полагая, что если кислотная и основная группы скомбинированы в одной молекуле катализатора, то такой катализ должен быть более эффективным даже в разбавленном растворе, они нашли, что а-пиридон (а-окси-пиридин) и бензойная кислота являются эффективными катализаторами при низких концентрациях, несмотря на то что катализирующие группы этих молекул являются существенно более слабыми кислотами и основаниями, чем фенол и пиридин. Было найдено, что 0,05 М раствор а-пиридона обеспечивает в 50 раз более высокую скорость мутаротации, чем эквивалентные концентрации фенола и пиридина в более разбавленных растворах разница в скоростях еще больше. Механизм этого катализа представлен схемой [c.164]

    Хотя Эдвардс [57] и приводит пример корреляции каталитических констант скоростей в случае общего основного катализа мутаротации глюкозы основаниями, принадлежащими к разным типам (ЗОГ- ОСНгСОО- СН3СОО-, СэНвЫ, ЫНз, и ОН"), с использованием уравнения (1,34), пока не доказано, что таким образом можно исправить недочеты уравнения Бренстеда во всех случаях общего кислотного и основного катализа. Тем более, что как раз в указанном случае это уравнение приводит к не так уж большим погрешностям (до 0,3 логарифмических единиц). [c.270]

    Тем не менее в настоящее время представляется сомнительным, является ли кинетика тре ьего порядка, полученная Свейном и Брауном [29], строгим доказательством согласованного механизма кислотно-основного катализа и является ли аномально высокая активность некоторых бифункциональных катализаторов простым следствием наличия кислотного и основного центров в одной молекуле. Покер [31] -впервые указал на то, что пропорциональность скорости произведению концентраций амина и фенола может быть связана с основным катализом феноксил-ионом в ионной паре типа НЬО--МНзК. Это подтверждается недавно обнаруженным фактом [32], касающимся того, что ионные пары типа РЬ0--+МК4 являются эффективными катализаторами мутаротации тетраметилглюкозы в бензоле, хотя и не содержат кислотных групп. Ясно также [30, 33], что бифункциональные катализаторы эффективны только при том условии, если они могут взаимодействовать с субстратом без образования биполярных интермедиатов с высокой энергией. Это предполагает, что катализаторы могут существовать в двух таутомер-ных формах, сравнимых по энергии. Таким образом, катализ мутаротации карбоновыми кислотами, 2-оксипиридином, пен-тандионом-2 и пиразолом можно представить следующими схемами  [c.186]

    В соответствии с выводами теории константы скорости в HjO оказываются значительно большими, чем в DgO. Например, в реакции мутаротации глюкозы h,0+/ Dj0+= 1.37 ku,o/ko,o = = 3,8. При катализе этой же реакции основанием СН3СОО изотопный эффект равен 2,38. [c.255]

    Одно из первых исследований такого катализа [71] в растворах было иосвящено изучению скорости мутаротации 0-тетра-метил-п-глюкозы в ирисутствии а-пиридона. Раствор а-ииридона (10 3 моль/л) был в 7000 раз эффективнее, чем раствор фенола и пиридина в эквивалентной концентрации. [c.215]

    Реакция мутаротации глюкозы имеет первый порядок по концентрации глюкозы и катализуется кислотами (А) и основаниями (В). Константу скорости первого порядка можно выразить с помощью уравнения такого же типа, какие встречаются для реакций, протекающих по параллельным путям  [c.453]


    Смешанные и неводные растворители. Щелочной гидролиз эфиров в системе гексанол-1 — НО — цетилтриметиламмонийбромид [194], катализируемый имидазолом гидролиз в системе октан — Н20 -2-этилгексилсульфосукцинат натрия [367] и мутаротация тетраметил-глюкозы в системе углеводород — Н 0 — карбоксилат додециламмо-ния [180] - все эти процессы характеризуются ростом скорости и другими признаками, аналогичными наблюдаемым при нормальном ми-целлярном катализе в водных системах. Вероятно, что эти реакции протекают в ядрах обращенных мицелл, образованных молекулами воды и электролита. Каталитическая область фазовой диаграммы первой из этих систем такова, что может служить хорошим физическим доводом в пользу существования обращенных мицелл. [c.643]

    Надежно доказано, что при мутаротации тетраметилглюкозы субстрат снижает значение ККМ вероятно, он стабилизирует обращенные мицеллы за счет увеличения вероятности образования водородных связей в ядре. В этой и других системах [393] скорости увеличиваются с ростом отношения Н О амфифильное соединение. Некоторые из этих систем характеризуются как общим кислотно-основным катализом амфифильными соединениями (например, R O R NHg ), так и эффектами концентрирования реагентов [180, 180а, 393а]. Рост скорости, сопровождающий ухудшение характеристик углеводородов как растворителей (бензол - гексан) и уменьшение липофильного характера субстрата, является, вероятно, результатом увеличения до- [c.643]

    Такой процесс не может протекать, когда катали осуществляется одной кислотой или одним основанием, присутствующими в апротонных растворителях, а тем не менее таких примеров много, в том числе и типичные прототропные реакции галогенирование ацетона [37], рацемизация и инверсия оптически активных кетонов [38], а также мутарота-ция нитрокамфоры [39]. Более того, в реакции изомеризации оксалата окиси мезитила в хлорбензоле [40], которая кинетически определяется взаимопревращением двух изомерных енолов, скорость в растворе, содержащем одновременно амин и кислоту, не превыщает сумму скоростей при катализе кислотой и амином порознь в отличие от ситуации, обнаруженной Свейном для мутаротации. [c.188]

    Отклонения от корреляционного соотношения Брёнстеда могут наблюдаться в том случае, если переходное состояние характеризуется специфическими взаимодействиями. Вследствие небольшого размера протона обычные стерические затруднения почти не влияют на кислотно-основное равновесие. Вместе с тем наличие объемных групп у одного или обоих реактантов, сказывается на кинетике реакции, поскольку такие группы препятствуют сближению частиц А] и В2 в переходном состоянии. Известно несколько примеров, отчетливо демонстрирующих этот эффект в реакциях, катализируемых кислотами или основаниями. Так, стерические затруднения проявляются при катализе замещенными пиридинами и их катионами гидратации ацетальдегида [45], когда наличие заместителей в положениях 2 и 6 приводит к уменьшению каталитической активности. Аналогично замедление процесса, обусловленное пространственными затруднениями, наблюда-. ют при катализе алкилпирилннами или их катионами галогенирования кетонов [46], мутаротации глюкозы [47] и инверсии ментона [47]. Противоположный эффект был обнаружен в катализируемых анионами реакциях галогенирования различных кетонов и эфиров [48]. Для большинства субстратов и карбоксилат-анионов соотношение Брёнстеда выполняется точно. Однако, если и катализатор и субстрат содержат вблизи реакционного центра заместители большого размера (алкильную или арильную группу или бром), наблюдаемая скорость реакции превышает ожидаемую на величину, достигающую 300%. Это означает, что близкое расположение в переходном состоянии двух больших групп должно понижать его энергию. Стабилизация переходного состояния, вероятно, определяется не столько энергетикой любого непосредственного притяжения между группами, сколько эффектом образования полости в растворителе путем подавления некоторых взаимодействий между молекулами воды. Две находящиеся на близком расстоянии группы будут приводить к разрыву меньшего числа связей между молекулами воды при образовании полости, чем группы, удаленные друг от друга. Этот фактор оказывает стабилизующее действие на переходное состояние. Порядок величины указанного эффекта можно проиллюстрировать, воспользовавшись данными из работы Батлера по изучению изменения растворимости в воде последовательно расположенных членов некоторых гомологических рядов. Батлер нашел [49], что каждая дополнитель- [c.261]

    Обмен дейтерия между нитрометаном и 0 0, как и следовало ожидать, катализируется ацетат-ионами, и скорость обмена равна скорости бромирования н тех же условиях [43[. Можно было бы ожидать, что сказанное справедливо и для рацемизации оптически активных нитросоединений, но в данном случае следует учесть, что эти соединения не совсем теряют свою активность при превращении в ион [45, 46 . Однако недавно было показано [47, 48], что причиной остаточной активности является присутствие примеси алкилнитрата. Подобный же тип реакции представляет собой мутаротация а-нитро-камфоры она катализируется как кислотами, так и основаниями [49]. Были получены количественные результаты при изучении кислотного катализа в растворе хлорбензола [50]. Лоури и большинство других авторов предполагают, что наблюдающееся изменение вращения происходит вследствие превращения нитрокамфоры в аци-форму (П)  [c.23]

    Менее изучена реакция обратимого присоединения оксисоединений к карбонильной группе(см. раздел III, 2в). Если пэинять механизм уравнения (16), то представляется вероятным, что реакции слева находятся в равновесии и при кислотном и при основном катализе, так как они представляют собой простые протолитические реакции, не сопровождающиеся изменением структуры связей (см. раздел V, 2). Мутаротация глюкозы является единственной реакцией такого типа, для которой изучен изотопный эффект [106—109]. Найдено, что замещение дейтерием вызывает уменьшение скорости реакции при катализе водой, ионом ацетата и ионом водорода но уже отмечалось, что в реакции, сопровождающейся переносом двух протонов, это не исключает наличия предварительного равновесия. [c.42]

    Однако вопреки всем этим доказательствам тройного механизма сомнительно, чтобы его можно было считать правильным для кислотноосновного катализа в общем случае, так как против него имеется все же ряд доводов. Хотя результаты дальнейшего изучения ацетоно-иодной реакции [120 6] подтвердили величину слагаемого [НАс] [Ас [, найденную Доусоном и Спайви [115], однако те же авторы указывают, что аналогичного слагаемого нельзя обнаружить в случае гли-колатных буферов, хотя вычисления по методу Суэйна и приводят к гораздо большему значению его, чем в случае ацетатных буферов. Дальнейшие доводы против тройного механизма были получены при изучении гидратации ацетальдегида — реакции, очень похожей на мутаротацию глюкозы (см. раздел 111, 2в). Беллу и Клюни [121 б] не удалось обнаружить слагаемого, в которое входит произведение концентраций, при изучении кинетики этой реакции, даже в таких условиях, в которых, согласно Суэйну, 75% всей скорости должно было бы приходиться на долю упомянутого слагаемого. [c.45]

    Имеющиеся данные свидетельствуют о том, что многие группы в активных центрах ферментов могут функционировать как общие кнслотные или общие основные катализаторы и тем самым вносить вклад в увеличение скорости процесса. Особенно эффективным является согласованный общий кислотно-основно " катализ модельной реакцией, иллюстрирующей этот тип каталнза, является мутаротация (разд. 2.2.2) тетраметилглюкозы  [c.293]


Смотреть страницы где упоминается термин Скорость и катализ мутаротации: [c.344]    [c.202]    [c.204]    [c.331]    [c.338]    [c.307]    [c.46]    [c.165]    [c.991]   
Смотреть главы в:

Химия и биохимия углеводов -> Скорость и катализ мутаротации




ПОИСК





Смотрите так же термины и статьи:

Мутаротация

Мутаротация катализ

Мутаротация скорость



© 2025 chem21.info Реклама на сайте