Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенолы, выделение из смеси

    Полученный раствор соли диазония постепенно, при перемешивании, добавляют в круглодонную колбу вместимостью 250 мл с раствором 6,7 г иодида калия в 10 мл воды и смесь оставляют стоять на 2 ч. Затем к колбе присоединяют воздушный холодильник и нагревают на кипящей водяной бане до прекращения выделения азота. Раствор подщелачивают концентрированным раствором щелочи до сильнощелочной реакции, чтобы связать побочный продукт реакции — фенол. Иодбензол отгоняют с водяным паром. Перегонку ведут до тех пор, пока из холодильника не перестанут стекать маслянистые тяжелые капли. [c.195]


    Для дополнительной очистки дифенилолпропана, выделенного из реакционной массы в виде аддукта с фенолом, предложено использовать его аддукты с крезолами. Для этого аддукт дифенилолпропан + фенол растворяют в смеси крезолов, состоящей в основном из мета- и пара-изомеров (75%), 11% о-крезола и 14% других гомологов фенола. Затем смесь охлаждают. Выделившиеся при этом кристаллы представляют собой аддукт дифенилолпропана с крезолами. [c.163]

    Смесь крезолов и ксиленолов после удаления фенола может быть использована также и в качестве ингибитора для этилированных бензинов. В последние годы войны в Германии применяли эту смесь в качестве ингибитора для стабилизации авиационных бензинов (не более 0,01% от веса бензина). Исследования, проведенные с фенолами, выделенными из гидрогенизатов и смол черемховских углей, это полностью подтвердили [27]. [c.839]

    Пропан, полученный из колонны, работаюш,ей под давлением, конденсируется и направляется в сборник, откуда поступает в оборот. Фенол, отобранный из колонны, работающей под атмосферным давлением, вместе с водяным паром из третьей колонны и небольшим количеством пропана очищается в особой дистилляционной колонне, из которой снизу отбирается чистый фенол, а сверху—азео-тропная смесь вода+фенол+газообразный пропан. Эта колонна орошается сверху фенольной водой. Дальнейшее выделение фенола из фенольной воды производится путем промывки ее пропаном в сборнике, откуда вода направляется в испаритель. Образующийся водяной пар используется для перегонки. Газообразный пропан из сборника возврата фенольной колонны сжимается и возвращается в оборот. [c.399]

    Для синтеза дубителя 65 на комбинате Сланцы была использована смесь широкой технической фракции смоляных сланцевых фенолов с температурой кипения в пределах 280—340° С и водорастворимых фенолов, выделенных в процессе дефеноляции сточных вод комбината Сланцы в период 23—25 мая 1963 г., в соотношении 1 1 (по весу). Сырьем для синтеза контрольного образца дубителя 12л служили водорастворимые фенолы, отобранные в цехе дефеноляции за тот же период времени. [c.17]

    Фенолы, выделенные обработкой щелочью, извлекают эфиром (предварительно разложив феноляты соляной кислотой). Эфир отгоняют из тарированной посуды на водяной бане (лучше в токе азота). Как отмечалось, при этом находят сумму кислых продуктов (фенолов и кислот), а для раздельного определения необходимо сначала удалить кислоты (раствором соды). Для выделения фенолов из их смеси с кислотами можно применить этерификацию (метиловым или этиловым спиртом) в присутствии серной или соляной кислот [5], затем обработанную смесь выливают в холодную воду и, отделив водно-кислотный слой, [c.239]


    Сырые фенолы, выделенные из подсмольных вод бутилацетатом, представляют собой смесь одно- и двухатомных фенолов с примесью твердых частиц и высококипящих смолистых веществ. В состав сырых фенолов из подсмольных вод входит [73] около 50% одноатомных фенолов (18% фенола, 24% крезола, 5% ксиленолов и около 3% вышекипящих одноатомных фенолов), 23% пирокатехина и его гомологов и 14% резорцина и его гомологов. Твердый остаток после перегонки сырых фенолов составляет до 10%. [c.237]

    Влияние нагревания и катализаторов. Реакция взаимодействия формальдегида с фенолом протекает в две стадии сначала образуются продукты присоединения, а затем происходит конденсация этих продуктов. Однако реакции конденсации могут происходить и одновременно с начальной реакцией, а потому образовавшаяся смесь является уже частично сконденсированной. Конденсации может быть подвергнута также выделенная смесь начальных продуктов реакции. [c.312]

    Типичный процесс образования дифенилолпропана протекает так. После смешения фенола с ацетоном и добавления катализатора в первое время смесь остается прозрачной и однородной, так как смешанные компоненты взаимно растворяются. Однако по мере протекания реакции жидкость становится густой и менее подвижной вследствие выделения кристаллов, а затем застывает в сплошную кристаллическую массу, цвет которой изменяется от белого до желтого или оранжевого. По окончании реакции непрореагировавшие компоненты и катализатор удаляют, отмывая водой, отгоняя с водяным паром, ректификацией или другими методами (выбор метода в значительной мере определяется типом используемого катализатора). Полученный дифенилолпропан очищают затем от примесей. [c.63]

    Разделение продуктов реакции может быть осуществлено так же (см. гл. IV), как в случае синтеза дифенилолпропана конденсацией фенола с ацетоном. При использовании катализаторной системы фтористый бор -ь ортофосфорная кислота сначала реакционную смесь нейтрализуют содой или гидроокисью кальция, а затем с паром отгоняют фенол . Соединения фтористого бора с уксусной кислотой и с диэтиловым эфиром можно отогнать вместе с фенолом в вакууме . Применим также способ выделения дифенилолпропана из реакционной массы в виде кристаллического аддукта с фенолом, который разрушают методами, описанными в гл. IV. Иногда реакционную массу разбавляют водой и отделяют водный слой, содержащий катализатор, от органического, который состоит из фенола, дифенилолпропана и побочных продуктов. Затем из органического слоя отгоняют фенол. [c.97]

    Если охлаждать исходную смесь, состав которой соответствует точке т (на практике при синтезе в избытке фенола содержание дифенилолпропана в реакционной массе не превышает 60%), в точке т начинается кристаллизация аддукта. При дальнейшем охлаждении (точка т") выделяется новая порция кристаллов и жидкость обедняется дифенилолпропаном (состав жидкости соответствует точке п). В точке Е при 37,8 °С (эвтектическая точка) происходит одновременная кристаллизация обоих компонентов — аддукта и фенола. Поэтому для выделения аддукта из расплава необходима несколько более высокая температура на практике ее поддерживают равной 43—45 °С. При этом, как следует из кривой ЕС, содержание дифенилолпропана в жидкой фазе составляет около 7,5%. [c.132]

    Реакция проводится в серии реакторов с применением катализатора палладий на угле. Продукты реакции фильтруются от катализатора и подвергаются ректификации с целью удаления непрореагировавшего фенола, который затем поступает в рецикл. Полученную смесь циклогексанона и циклогексанола разделяют дистилляцией. Циклогексанон направляют затем на переработку в соответствующий оксим классическим методом. После проведения бекмановской перегруппировки капролактам-сырец, выделенный из реакционной массы нейтрализацией аммиаком и последующей экстракцией растворителем, очищается методом кристаллизации из водных растворов.  [c.307]

    Для разрушения аддукта с целью выделения из него чистого дифенилолпропана имеются несколько способов. Например, по способу используют воду, причем необходимое количество воды в 25 раз превышает количество фенола в аддукте. Смесь воды и аддукта нагревают до 45—70 °С в аппарате 7 (рис. 12). Дифенилолпропан при этих [c.132]

    Крекинг можно проводить и в проточных условиях . При атмосферном давлении, 300—320°С и объемной скорости 1,7 ч продукты крекинга имели следующий состав (в расчете на смесь, не содержащую хлорбензола и фенола) 35,8% фенола, 6,9% о-этилфенола, 6,5% /г-изопропилфенола, 16,7% фенолов с т. кип. выше 240—270 °С п 33,1% кубового остатка. Фенол и хлорбензол, выделенные из полученного дистиллята, могут быть использованы в производстве дифенилолпропана. [c.182]

    Полученная смесь фенола и ацетона нейтрализуется раствором щелочи и подвергается последовательной ректификации для выделения целевых продуктов—фенола и ацетона, а также получающихся побочных продуктов а-метилстирола, ацетофе-нона и сложного фенола (кубовый остаток). [c.309]

    Разработаны различные спо. обы выделения серной кислоты экстракцией с использованием в качестве экстрагентов таких реагентов,, как смесь каменноугольных фенолов или каменноугольное масло, трудно растворимые жирные или ароматические спирты в присутствии инертного растворителя (бензол, толуол, тетралин и др.). [c.41]


    В тех пробирках, в которых находится раствор, представляющий собой одну фазу, опыт надо начинать с охлаждения и признаком гетерогенности следует считать выделение кристаллов фенола или льда (или помутнение раствора). При изучении участка диаграммы, отвечающего малым концентрациям фенола, поиски температур равновесия следует вести при низкой температуре при помощи охладительной смеси (смесь соли со снегом). Если приходится работать с одним термометром, то рекомендуется последовательно менять состав, приливая воду к первоначально взятому количеству фенола. Результаты каждого опыта записывать в таблицу по образцу  [c.215]

    Применение других растворителей (метилбутил- и пропилкетонов, содержащих НС1) рассмотрено в работе [80]. О неирерьшном хроматографическом разделении Li и К см. [81]. Хроматография на бумаге нашла в основном применение для качественного анализа щелочных металлов и для приближенного количественного их определения. Описано выделение с ее помощью изотопа s - из хлорида бария, облученного нейтронами [77], и из азотнокислого раствора облученного урана [69], причем в последнем случае опыты могут проводиться на колонках из целлюлозы. Для качественного разделения смеси щелочных металлов наиболее пригодны смеси, содержащие фенол [64, 67], и, в частности, фенол-метанольная смесь с H L Недостатком метода хроматографирования на бумаге является то, что разделение может производиться с максимальным количеством (100— 200 мкг) металла. Чувствительность химических методов обнаружения редких щелочных металлов в зонах — 1 —5 мкг. Эти два обстоятельства су- [c.42]

    Фенол нитруется и сульфируется легче, чем бензол. Так же, как и в предыдущей реакции, нитро- и сульфогруппы входят в пара- и орто-положение по отношению к ОН-группе. Так, прн действии на фенол разбавленной азотной кислотой получается смесь п-нитрофенола и о-нитрофенола. о-Нитрофенол легко может быть выделен из смеси перегонкой с водяным паром (см. стр. 23). Пара-изомер с водяным паром не перегоняется. [c.452]

    Трифенилфосф ит (СеН50)зР. В реактор помещают 310 г фенола. Реактор снабжен мешалкой, капельной воронкой, термометром и хорошо работающим обратным холодильником. Нагревают фенол до температуры несколько выше температуры его плавления и осторожно прибавляют при перемешивании 137,5 г треххлористого фосфора. В начале прибавления температура несколько повышается, но после насыщения реакционной смеси образующимся хлористоводородным газом происходит понижение температуры и одновременно выделяется хлористоводородный -аз. После добавления всего треххлористого фосфора продолжают пе-ремещивание до прекращения охлаждения реакционной смеси, затем осторожно нагревают в колбе с обратным холодильником. Через холодильник пропускают подогретую воду, чтобы избежать закупорки его твердым фенолом. Реакционную смесь нагревают при перемешивании до тех пор, пока скорость выделения хлористоводородного газа не будет меньше 0,01 моль1ч или же температура не будет оставаться постоянной. Полученная смесь представляет собой раствор главным образом фенола в трифенилфосфите. Эти вещества легко разделяются разгонкой при уменьшенном давлении. Температура кипения 183—184° при 1 мм рт. ст., температура плавления 21—23°. Выход 291 г (94%). [c.174]

    Выделение фенола из смесей, образующихся при расщенленни гидроперекиси кумола, в которых всегда присутствуют хотя бы небольшие количества ацетофенона, диметилфенилкарбинола и а-метилстирола, рекомендуется осуществлять путем обработки продуктов водно-щелочными растворами и последующей ректификацией [399, 400] или просто ректификацией смеси продуктов расщеп.ления на мощных тарелочных колонках [401—403] и рядом других способов [404—412]. Так, в одном патенте [379] рекомендуется продукты расщепления гидроперекиси изонронилбензола нейтрализовать эквимолекулярным количеством 10—60%-ного водного раствора фенолята натрия и этим избежать возможного образования гелеобразного осадка, что имеет место нри нейтрализации твердыми щелочами или водными растворами едких щелочей. Для выделения и очистки фенола рекомендуется смесь продуктов расщепления гидроперекиси кумола после прибавления воды обрабатывать гексаном [413]. Боуэн [414] рекомендует после удаления из смеси ацетона, а-метилстирола и ацетофенона оставшийся -кумилфенол подвергать пиролизу нри 200—400° и этим самым повышать выход фенола и а-метилстирола за счет реакции  [c.543]

    Жидкостное распределение конденсатов дыма [40]. Раствор едкого натра, полученный по методу, изложенному в разделе Б,1,а, 4, обрабатывают углекислым газом 1 час для выделения фенолов. Затем смесь непрерывно в течение 2 дней экстрагируют эфиром. Водный раствор подкисляют концентрированной серной кислотой и продолжают экстракцию свежим эфиром еще 2 дня. Эфирный экстракт обрабатывают небольшим избытком диазометанаЧ сушат 12 час над сульфатом натрия и десорбируют до объема точно 3 мл. Этот раствор хранят в холодильнике до отбора пробы объемом 20—50 мкл для газовой хроматографии. [c.545]

    Клетки растений обычно разрушают в водных растворах в присутствии хелатирующих агентов, подавляющих нуклеазную активность, и детергентов, которые растворяют мембраны. После разрушения клеток белки денатурируют н осаждают из экстракта, для чего часто используют фенол либо смесь хлороформа с октанолом. Некоторые методики для освобождения ДНК от белков хроматина предусматривают использование протеиназы (разд. 4.2.3.2). После депротеинизации раствор ДНК все еще сильно загрязнен РНК и углеводами и, следовательно, обычно подлежит дальнейшей очистке, техника которой в определенной степени зависит как от количества использованной для выделения ткани, так и от целей эксперимента. [c.237]

    Каучук GR-S подвергается циклизации при нагревании в растворе фенола, крезола или нейтрального каменноугольного масла, выкипающего до 160—180°, с хлороловянной кислотой, хлорным оловом или трехфтористым бором (в виде комплекса с эфиром). Приблизительно через 10 мин. температура начинает подниматься, а вязкость раствора возрастать, пока не образуется гель. Затем температура падает h вязкость раствора снижается до тех пор, пока (приблизительно через 30 мин.) реакционная смесь пе превратится в раствор светло-коричневого цвета. Циклизован-ный каучук GR-S может быть выделен из последнего путем перегонки с водяным паром или экстракцией. Этот продукт слабо пропускает водяные пары, поэтому используется в качестве влагоустойчивых покрытий для бумаги. [c.215]

    Процесс образования дифенилолпропана из гидроперекиси изопропилбензола проходит с большим выделением тепла, поэтому очень важен вопрос о его эффективном отводе и i . Например, предложено смешивать фенол с катализатором и к полученной смеси медленно добавлять гидроперекись. Ее можно вводить в несколько мест по высоте реакционной зоны и в этом случае аппарат выполняют с удлиненной реакционной зоной (трубка и т. п.). Такие меры не только способствуют более эффективному отводу тепла, но и создают благоприятные условия для синтеза вследствие наличия большого избытка фенола в каждый момент времени. В патенте предложено использовать аппарат с удлиненной реакционной зоной, в которую тонкой пленкой подают смесь реагентов. Фенол и гидроперекись, предварительно растворенные в спирте (метиловом, этиловом) или эфире, пропускают через аппарат тонкой пленкой при 20 °С одновременно параллельным током вводят хлористый водород. Время реакции 64 jiiuH. Выход дифенилолпропана 65% (т. пл. 147—149 °С). Для отвода тепла можно также использовать растворители — углеводороды, спирты, эфиры. [c.103]

    Сложность способа состоит в том, что смесь побочных продуктов, выделенную из дифенилолпропана перекристаллизацией или экстракцией, необходимо предварительно разделить на фракции, так как присутствие больших количеств дифенилолпропана и смол мешает кристаллизации аддукта. Ректификацию проводят в глубоком вакууме (остаточное давление 0,3 мм рт. ст.). Первая фракция отгоняется при 100—150 °С и содержит фенол, п-изопропил- и п-изопропенилфенол и орто-орто-изомер дифенилолпропана. Ее можно возвратить на стадию синтеза. Вторая фракция отгоняется при 161 —165 С и состоит в основном из соединения Дианина и ортопара-изомера дифенилолпропана. Остаток после дистилляции — смесь дифенилолпропана и высококипящих побочных продуктов. [c.179]

    В колбу вносят 0,5 моль (47 г) фенола и 0,6 моль изобутилового спирта (фракция 104—109° С). При непрерывном и сильном передсешиваппи содержимое колбы нагревают до 85° С и при. )той температуре из капельной воропки по каплям приливают 30 г серной кислоты плотностью 1,83—1,84 г см . Температуру реакции (85—86° С) регулируют скоростью подачи в колбу серной кислоты. По окончании приливания серной кислоты смесь подогревают при непрерывном перемешивании до 130—140° С и эту температуру поддерживают в течение 2 ч также при непрерывном перемешивании. Затем, прекратив нагревание, смесь перемешивают еще 2 ч и оставляют стоять на 10—12 ч. После этого застывшую кристаллическую массу смывают из колбы горячей водой в делительную г оронку и промывают ее 3—4 раза теплой водой (температура воды 60° С) до исчезповеипя кислой реакции на копго. Промытый продукт реакции может быть переработан для выделения чистого трет-бутнлфенола одним из описанных ранее способов. [c.386]

    Имеются указания на возможность выделения индивидуальных веществ из смесей спиртов с близкими температурами кипения путем экстрактивной ректификации с фенолом как разделяющим агентом [56], повыщающим, в противоположность воде, относительную летучесть первичных спиртов. Этим способом можнэ разделить, например, смесь эталона и изопропанзла. [c.286]

    В "Отчете" остро критикуются отклонения от регламента в процессе синтеза. Регламент Givaudan предусматривал ацилирование конечной смеси с целью очистки последней от фенола перед отгонкой ксилола и этиленгликоля. На практике же на заводе в Севезо эти операции проводились в обратном порядке. По мнению авторов "Отчета", если бы ацилирование было проведено сразу же после окончания синтеза в 05.00 в субботу, 10 июля 1976 г., катастрофа могла не случиться. По нашему мнению, эта перестановка технологических операций была сделана не случайно. При такой последовательности есть возможность отогнать ксилол и этиленгликоль без примеси ТХФ, так как натриевая соль практически нелетуча, в то время как выделенный первоначально фенол обладает достаточной летучестью. Есть подтверждение тому, что администрация завода дала разрешение начать процесс в такое время, когда было ясно, что закончить его в пределах нормального рабочего цикла нельзя. Если бы все технологические операции были проведены, аварии скорее всего не случилось. В этом случае опять возникает вопрос, имела ли администрация достаточные основания считать вероятным самопроизвольное возникновение такого процесса (который привел к аварии) в случае, когда конечная смесь осталась в реакторе (без проведения операции ацилирования) и температура (правда, не указанная в "Отчете") была ниже 185 С [H SE.1980]. В работе [Wilson,1982] указана температура 158 °С, однако источник этих сведений не назван. Вопрос о температуре будет обсуждаться ниже. [c.415]

    Технологический регламент производства индивидуального 5-метилрезор-цина иа базе суммарных двухатомных фенолов сланцевого происхождения предусматривал применение дихлорэтана для очистки выделенного продукта от примесей. При проектной проработке были приняты необходимые меры по герметизации оборудования, очистке содержащих дихлорэтан стоков и выбросов в атмосферу, что привело к большому усложнению технологической схемы. Одновременно перед научно-исследовательской организацией был поставлен вопрос о поиске более безвредного реагента. В результате дополнительных исследований было установлено, что вместо дихлорэтана можно применить смесь гораздо менее опасных толуола и бутилацетата. [c.71]

    Экстрактивная перегоика — второй метод разде [ения близкокипящих компонентов. При этом смесь перегоняют с третьим, малолетучим компонентом, присутствие которого увеличивает разницу в летучести разделяемых компонентов. Так, смесь толуола и метилциклогексана имеет относительную летучесть а = = 1,25 при наличии 50% (масс.) фенола в жидкой фазе а повышается до 1,75. В отличие от разделяющего компонента азеотропной перегонки, летучесть которого относительно велика и который уходит в виде дистиллята, разделяющий компонент экстрактивной перегонки обладает невысокой летучестью и уходит с остатком перегонки, что может оказаться экономичным, если концентрация компонента, уходящего в виде остатка, невелика. Экстрактивная перегонка, подобно азеотропной, применяется для выделения ароматических углеводородов, а также для разделения бутан-бу-тиленовых и бутилен-бутадиеновых смесей, получаемых в процессе дегидрирования к-бутана. В качестве экстрагентов применяют фурфурол, N-мeтилпиppoлидoн и др. [c.50]

    Реакция гидразингидрата с дифенилметионатом протекает очень сложно [452]. Разделение реакционной смеси можно осуществить путем отгонки с паром. Фенол и фениловый эфир метансульфокислоты отгоняются из реакционной смеси, а дигидразид метионовой кпслоты и гидразид фенилметионата остаются. При более высокой температуре (255°) получена смесь аммониевых солей и амидов, но гидразид не выделен. Фенилметилметионат ведет себя аналогично. [c.179]


Смотреть страницы где упоминается термин Фенолы, выделение из смеси: [c.304]    [c.138]    [c.129]    [c.174]    [c.184]    [c.483]    [c.338]    [c.168]    [c.223]    [c.114]    [c.111]    [c.521]    [c.750]    [c.150]    [c.565]   
Руководство по газовой хроматографии (1969) -- [ c.194 , c.197 , c.199 ]

Руководство по газовой хроматографии (1969) -- [ c.194 , c.197 , c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Фенолы в смеси с ПАВ

Фенолы выделение



© 2025 chem21.info Реклама на сайте