Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Истинная константа скорости каталитического процесса

    Теплота адсорбции, входящая в выражение адсорбционных коэффициентов Ь (см. гл. VII), может сказываться на величине кажущейся энергии активации гетерогенно-каталитического процесса, лимитирующегося реакцией в адсорбционном слое. В рассмотренном выше случае в) реакции нулевого порядка скорость реакции равна истинной константе скорости и поэтому величина экспериментально наблюдаемой (вычисляемой по уравнению Аррениуса) кажущейся энергии активации Е каж РЭВ на истинной энергии активации реакции Е. [c.310]


    Таким образом, при большой степени превращения наличие даже не слишком сильного обратного перемешивания эквивалентно снижению константы скорости каталитического процесса от ее истинного значения К до некоторого эффективного К - Для наглядности на рис. IV. 1 сопоставлены кривые распределения концентраций реагента в слое и их выходные значения для различных случаев. [c.180]

    С повышением концентрации кислоты концентрация активной промежуточной формы, как правило, возрастает, и в пределе, при достаточно большой концентрации кислоты, становится равной единице, т. е. практически все вещестно А оказывается в форме А. В этой области концентраций серной кислоты эффективная константа скорости становится равной истинной константе скорости и, таким образом, последняя может быть определена непосредственно из данных по кинетике реакции. На рис. 66 приведена зависимость эффективной константы скорости превращения о-бензоилбензойной кислоты в антрахинон от концентрации серной кислоты. Видно, что эф(1> растет с ростом концентрации серной кислоты до некоторого предельного значения. Это предельное значение дает непосредственно величину истинной константы скорости кислотно-каталитического процесса. Таким способом истинная константа скорости может быть определена и в тех случаях, когда не существует методов определения концентрации активной промежуточной формы. Как правило, однако, при столь больших концентрациях кислоты [c.248]

    Участие компонентов среды в качестве реагентов в реакциях электрофильного или нуклеофильного замещения функциональных групп ионита, естественно, приведет к тому, что скорость этих процессов станет различной и будет зависеть от активности реагента в этих реакциях. Количественная оценка роли среды в процессах замещения функциональных групп возможна только в тех случаях, когда определены константы скорости реакций. Если в результате каталитических превращений самой среды при нагревании в присутствии ионита происходит изменение ее состава, то при оценке ее роли в процессе замещения функциональных групп необходимо учитывать истинный состав сорбированного раствора, а на его первоначальное состояние. Например, при нагревании сульфокатионитов в спиртах вследствие дегидратации спиртов в фазе ионнта фактически образуется водно-спиртово-эфирно-олефиновая смесь, и в этом случае нельзя говорить о стойкости катионита в спиртах, так как в реакциях электрофильного замещения сульфогрупп помимо молекул спирта принимают участие вода, простой эфир и олефин в соответствии с их реакционной способностью и мольной долей в составе сольватных оболочек противоионов. Поэтому при проведении опытов в статических условиях с ограниченным количеством органического растворителя трудно получить объективную информацию о влиянии природы среды на стойкость функциональных групп в реакциях электрофильного и нуклеофильного замещения. Для получения такой информации опыты необходимо проводить в динамических условиях (при каталитических превращениях самой среды) или в большом избытке внешнего растворителя (при минимальной степени превращения среды). Поэтому выводы о влиянии природы органической среды на стойкость сульфокатионитов, приведенные в работах [7, 12, 14, 180, 201—203, 205, 225, 226, 237], [c.182]


    Таким образом, во всех случаях в кислой среде исходное вещество присутствует в двух или трех формах, из которых только одна является реакционноспособной. Скорости взаимных переходов этих форм велики, и можно считать, что на протяжении всего процесса обе формы присутствуют в термодинамически равновесных концентрациях. Лимитирующей стадией кислотно-каталитического процесса, как правило, является превращение активной промежуточной формы в продукты реакции. Константу скорости к этой стадии принято называть истинной константой скорости кислотно-каталитического превращения. Если обозначить актив- [c.246]

    На рис. 95 приведена зависимость эффективной константы скорости превращения о-бензоилбензойной кислоты в антрахинон от концентрацин серной кислоты. Видно, что дфф растет с росто.у концентрации серной кислоты до некоторого предельного значения. Это предельное значение дает непосредственно истинную константу скорости кислотно-каталитического процесса. Таким способом истинная константа скорости может быть определена и в случаях, когда не существует методов определения концентрацин активной промежуточной формы. Как правило, однако, при столь больших коп- [c.335]

    В ИХФ (М. И. Винник) разрабатывалась теория каталитического действия водных растворов сильных кислот и щелочей, а также комплексов фтористого бора с эфиром и уксусной кислотой [251—254]. Было установлено, что измеряемая индикаторным методом функция кислотности Гаммета для водных растворов сильных кислот представляет собой логарифм термодинамической активности протонов. В случае мономолекулярных процессов, катализируемых кислотами, истинная константа скорости не зависит от содержания воды в растворе. Предложены критерии для оценки реакционной способности веществ в бимолекулярных процессах, протекающих в водных растворах сильных кислот. Разработаны методы определения констант ионизации [c.55]

    Сопоставление этого выражения с выражением (IV.8) показывает, что второй из экспоненциальных сомножителей, характеризующий неполноту превращения, вызванную неоднородностью структуры кипящего слоя, при разделении аппарата на две секции уменьшился и приблизился к единице. Кроме того, из сопоставления формул (IV.6) и (IV.7) следует, что оба рассмотренные выше эффекта одинаковым образом влияют на снижение движущей силы каталитического процесса и уменьшение эффективной константы скорости К по сравнению с ее истинным значением К в неподвижном слое с той же средней концентрацией катализатора. Считая в первом приближении оба эффекта аддитивными, можно положить общее снижение константы скорости равным  [c.182]

    Если энергия активации рассчитана из уравнения (10.25) по температурной зависимости константы скорости отдельной стадии каталитического процесса, то она будет отвечать истинной энергии активации ист этой стадии. Если каталитический процесс протекает через лимитирующую стадию, то истинной энергией активации процесса следует считать энергию активации этой стадии. Например, для реакций, лимитирующей стадиею которых является адсорбция, энергия активации адсорбции может рассматриваться как истинная. На практике обычно- [c.221]

    Наиболее представительной характеристикой активности катализатора является скорость реакции в его присутствии, количественно характеризуемой константой скорости. Задача разработки методики измерения констант скоростей исследуемых реакций сводилась к получению данных о величинах выходов продуктов реакций (степеней превращения) в зависимости от параметров процесса времени контакта, исходного состава смеси, температуры. Основным параметром, который варьировался при постановке измерений было время контакта ( ), что достигалось изменением скорости газа-носителя или количества катализатора. Соотношение реагентов для реакции Клауса Н2 5 8 0 составляло 2 1, а для реакции гидролиза 0 52 20, 1 2 соответственно. Однако измерение скоростей каталитических реакций сопряжено с преодолением многих методических трудностей, таких как искажение истинной кинетики реакции эффектами, связанными с транспортом исходных веществ и продуктов реакции из потока к гранулам катализатора, медку гранулами и внутри их, а также возникновение температурных градиентов как по дайне слоя, так и по радиусу гранулы. [c.86]

    Кинетика гетерогенных каталитических реакций. Многоста-дийиость гетерогенных процессов является причиной того, что кинетические характеристики гетерогенной каталитической реакции (константа скорости, порядок реакции), найденные экспериментально, могут отличаться от соответствующих характеристик химического процесса, протекающего на поверхности катализатора. Например, порядок каталитической реакции, лимитируемой диффузией, обычно равен единице, так как скорость диффузии пропорциональна концентрации в первой степени вне зависимости от порядка процесса на поверхности катализатора. Получаемые экспериментально константа скорости и порядок реакции называются кажущимися в отличие от истинной константы скорости и истинного порядка, относящихся к химической реакции на поверхности катализатора. Установление истинных кинетических характеристик связано с выяснением роли отдельных стадий и имеет значение для вскрытия механизма каталитического процесса. [c.274]


    Необходимо, наконец, отметить, что применение принципа л. с. э. к электродным процессам в полярографии имеет менее строгие предпосылки, чем его примёнение для гомогенных химических реакций, к которым он первоначально был приложен. Наряду с некоторыми каталитическими реакциями электродные реакции являются первым примером гетерогенного процесса, к которому применены уравнения л. с. э. Но здесь наряду с факторами строения молекул существенную роль играют факторы электрохимической кинетики — строение двойного слоя, адсорбируемость молекул, деформация связей и т. д., которые явно не коррелируются с электронным строением молекулы. В частности, высказывались соображения [97], что для выполнения уравнения л. с. э. величина г] -потенциала должна быть мала в противном случае следует внести поправку на г -потенциал [98]. Было высказано мнение [99], что уравнения л. с. э. должны применяться не к значениям д, а к значениям констант скорости электродного процесса кь, экстраполированным к условиям, в которых о = о, т. е. к электрокапил-лярному нулю. Систематических наблюдений над влиянием этих факторов на Ег, , однако, нет. Они должны быть поставлены в будущем, так же как и должны быть поставлены опыты с повышением температуры, подбором растворителя и быстрокапающего капилляра для предотвращения адсорбции компонентов электродной реакции и получения истинных значений р -констант. [c.111]

    Чаще всего медленной (лимитирующей) стадией процесса является распад протонированной молекулы. Константа скорости этой стадии называется истинной константой скорости кислотно-каталитического превращения. Если распад происходит по схеме  [c.266]

    Наблюдаемое различие в каталитической и электрохимической активностях гладкого и платинированных платиновых электродов, не связанное с величиной истинной поверхности, указывает на роль структурных особенностей поверхности, например природы и количества дефектов на поверхности, вершин и ребер иристаллов. При платинировании появляется большое число мелких кристаллов платины на поверхности, резко возрастает доля поверхностных атомов, находящихся на вершинах и ребрах кристаллов. Если скорость процессов на дефектах, т. е. на атомах платины на вершинах и ребрах кристаллов, будет ниже, чем на атомах платины на идеальных гранях кристаллов, то должно наблюдаться резкое уменьшение констант скоростей при платинировании, что и происходит на опыте. [c.224]

    Изменение наклона графика становится еше более заметным, если в эту серию кислот включить Н2О и Н3О+. Подобную картину наблюдают и для ряда других кислотнокатализируемых процессов, а также в случае основного катализа частицами Н2О и ОН , даже если скорости как прямой, так и обратной реакций намного меньше определяемого диффузией предела. Сомнительно, однако, сколь далеко идущие выводы можно делать из анализа кривизны графиков соотношений Брёнстеда, основываясь только на данных для реакции субстрата с молекулами растворителя. Во-первых, частицы Н2О, Н3О+ и ОН- отличаются химически (а часто и по своей зарядности) от молекул других изученных катализаторов. Кроме того, при катализе молекулами воды наблюдаемую скорость необходимо поделить на величину 55,5 моль/л, чтобы получить константу скорости второго порядка, сопоставимую с каталитическими константами других растворенных частиц. Во-вторых, обычно используемые значения р/С(НгО) =15,74 и р/С(НзО+)=—1,74 включают концентрацию воды [Н20]=55,5 и могут не отражать истинную кислотность или основность этих частиц. Тот факт, что каталитический эффект иона гидроксила (и в меньшей степени иона гидрония) часто на несколько порядков меньше предсказываемого с помощью соотношения Брёнстеда, имеет некоторое практическое значение. Нетрудно показать, что если бы соответствующие кинетические и термодинамические характеристики данных ионов удовлетворяли этому соотношению, было бы невозможно обнаружить общий кислотно-основный катализ в реакциях, где значения а или р близки к единице. [c.239]

    Если уравнение (25) применено для отдельной элементарной стадии каталитического процесса, то энергия активации, рассчитанная по уравнению (25), называется истинной энергией активации этой стадии. Если каталитический процесс протекает через лимитирующую стадию, то истинной энергией активации следует считать энергию активации этой стадии. Например, для реакций, лимитирующей стадией которых является адсорбция, энергия активации адсорбции может рассматриваться как истинная. На практике обычно имеют дело с каталитическим процессом в целом. Константа скорости, определяемая на опыте, в этом слз ае включает константы скорости или константы равновесия отдельных стадий этого процесса. Энергия активации, рассчитанная по уравнению (25), соответственно включает в себя энергии активации и тепловые эффекты этих стадий и называется поэтому кажущейся энергией актввахщи Еуаж- [c.232]

    Угольная кислота, следовательно, является сравнительно сильной, почти как муравьиная. Ее кажущаяся слабость объясняется тем, что лишь небольшая доля растворенной двуокиси углерода находится в виде Н2СО3. Различие между СО2 и Н2СО3 не существенно, пока рассматривают термодинамические свойства, и тогда вполне достаточно использовать кажущуюся константу диссоциации К С02)- Однако это различие становится важным, когда изучают нестационарные процессы, в особенности протекающие с большой скоростью. Позднее (гл. 10) мы увидим, что каталитический эффект растворов, содержащих двуокись углерода или бикарбонат-ионы, МОЖНО понять только в том случае, если известны как истинная, так и кажущаяся константы диссоциации. [c.54]


Смотреть страницы где упоминается термин Истинная константа скорости каталитического процесса: [c.249]    [c.251]    [c.271]    [c.214]    [c.228]   
Курс химической кинетики (1962) -- [ c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Константа истинная

Константа скорости

Константа скорости истинная

Процесс каталитический

Процесс скорость

Скорость истинная



© 2025 chem21.info Реклама на сайте