Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение аминокислот методом тонкослойной хроматографии

    Для разделения аминокислот и их производных используется также тонкослойная хроматография носителем служит силикагель О. По сравнению с бумажной хроматографией этот метод гораздо быстрее и проще, но менее эффективен. [c.70]

    Методом тонкослойной хроматографии (ТХ) можно быстро разделить аминокислоты метод требует несложного оборудования и малых исходных количеств. Для изготовления слоев толщиной 0,1 — 0,3 мм применяют стандартные носители, такие, как сипикагепь, оксид алюминия, поро-щок целлюлозы, ионообменники на основе целлюлозы, попиамиды, а также полиакриламидный и декстрановый гепи. В зависимости от материала носителя ТХ бывает адсорбционной (например, разделение на силикагеле и оксиде алюминия) или распределительной (например, разделение на слоях целлюлозы). В качестве подвижной фазы применяют те же системы, что и для бумажной хроматографии. [c.58]


    Цель работы познакомиться с разделением аминокислот методом тонкослойной хроматографии с последующей идентификацией их с помощью проявителя. [c.141]

    Разделение аминокислот и пептидов с помощью ионообменной хроматографии может быть осуществлено двумя способами путем хроматографии на колонках и методом тонкослойной хроматографии. [c.133]

    Бреннер (1961) описал метод тонкослойной хроматографии для быстрого разделения и определения 22 аминокислот белковых гидролизатов. [c.637]

    Тонкослойная хроматография успешно применяется для разделения ДНФ-аминокислот [24]. Для разделения ДНФ-амино-кислот, растворимых в воде и кислотах, применяют метод восходящей хроматографии в системе н.-пропанол—34%-й= раствор аммиака (7 3). Результаты хроматографии представлены в табл. 7. [c.310]

    При использовании метода тонкослойной хроматографии разделение проводят на пластинках, покрытых силикагелем. Их можно приготовить в лаборатории (на поверхность стекла тонким слоем наносят суспензию силикагеля в воде) (с. 72). Разделение ДНФ-производных аминокислот можно проводить также на готовых стандартных пластинках, например Силуфол . Размеры камеры определяются размером пластинки. [c.147]

    Разделение аминокислот методом тонкослойной хроматографии [c.141]

    Работа 7. Разделение аминокислот методом тонкослойной ионообменной хроматографии [c.55]

    Для фракционирования аминокислот применяется хроматография в тонком слое силикагеля или целлюлозы. В отношении отдельных аминокислот для хроматографии на силикагеле характерна большая чувствительность, чем для хроматографии на целлюлозе, однако в тонком слое целлюлозы разделение лучше. В связи с этим ниже приводится метод Аркса и Неера [2] разделения аминокислот тонкослойной хроматографией на целлюлозе. [c.234]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]


    Система с градиентным элюированием обладает рядом преимуществ по сравнению с методом тонкослойной хроматографии. Во-первых, сводится к минимуму возможность ошибки, поскольку разделение идет в стандартных условиях, а полученные результаты можно контролировать методом ТСХ. Во-вторых, этот метод позволяет выявлять необычные аминокислоты или устойчивые к гидролизу пептиды, что в некоторых случаях представляет большой интерес. Как показано на рис. 33.8, на одной колонке удается разделить все обычные аминокислоты, а при соблюдении стандартных условий провести и количественный анализ. Однако эти преимущества достигаются благодаря применению более сложного оборудования и больших количеств веществ (по крайней мере, вдвое по сравнению с ТСХ). [c.377]

    Радиоизотопный анализ производных жирных и желчной кислот, приготовленных с использованием и разделенных методом хроматографии на бумаге, осуществляли путем непосредственного измерения радиоактивности пятен хроматограммы [91, 94, 95] или путем приготовления из бумажной хроматограммы авторадиограммы и последующего измерения интенсивности хроматографических зон с помощью записывающего микрофотометра [92, 93]. Использовали и жидкостные сцинтилляционные счетчики в комбинации с жидкостной колоночной хроматографией [96]. При использовании жидкостного сцинтилляционного счетчика в комбинации с тонкослойной хроматографией чувствительность метода, в котором применяется для определения динитрофенильных производных аминокислот [97], возрастала в сто раз, достигая 1 пМ 98] при воспроизводимости результатов d=6%. Анализируя аналогичным методом смеси кислот известного состава, можно идентифицировать анализируемые кислоты и оценить их количества. Определенным преимуществом диазометана является отсутствие пространственных эффектов при проведении вышеуказанных реакций. [c.154]

    При помощи тонкослойной хроматографии на слое силикагель — гипс разделены [188] карбобензоксипроиз-водные (КБО) аминокислот, (КБО) пептиды, (КБО) пептидные эфиры, аминокислоты, пептиды со свободной аминогруппой и хлоргидраты эфиров аминокислот. Для разделения применяли системы н. бутанол—ацетон — ледяная уксусная кислота — аммиак — вода (4,5 1,5 1 1 2), н. бутанол — ледяная уксусная кислота — аммиак (та же концентрация) (5,5 3 1,5), н. бутанол — ледяная уксусная кислота — аммиак (та же концентрация) — вода (6 1 1 2), н. бутанол — ледяная уксусная кислота — пиридин — вода (15 3 10 12). Этим методом разделены не только отдельные классы соединений, но одновременно и соединения одного класса. [c.99]

    ХРОМАТОГРАФИЯ — метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях. Хроматографические сорбционные, методы различаются по следующим. признакам по средам, в которых производится разделение (газовая, газожидкостная, жидкостная X.) по механизмам разделения (молекулярная, ионообменная, осадочная и распределительная X.) по технике проведения разделения (колоночная, капиллярная, бумажная и тонкослойная X.), Методами X. анализируют смеси неорганических соединеиий, концентрируют следы элементов. В химической т хнологии X. применяют для очистки и разделения различных веществ, близких по свойствам лантаноидов, актиноидов, аминокислот и др. [c.280]

    Хроматография производных аминокислот получила интенсивное развитие в связи с разработкой методов определения первичной структуры белков. Вероятно, трудно найти в органической химии и биохимии более удачный пример столь тесной взаимосвязи развития представлений о структуре и функциях большого класса веществ, каким являются белки, с хроматографическими методами анализа. Основное внимание было направлено на разработку методов определения N-концевых остатков аминокислот в белках, причем в идентификации соответствующих производных большое значение имели тонкослойная (ТСХ) и бумажная хроматография (БХ) (см. обзоры [1, 2]). Газожидкостная и жидкостная колоночная хроматографии находят в этой области ограниченное применение, однако интерес к последнему методу постепенно растет. Интерес к жидкостной хроматографий вызван вполне определенными причинами. Во-первых, постоянно появляются новые методы избирательной модификации остатков аминокислот в белках, а идентификация производных аминокислот требует развития хроматографических методов. Во-вторых, исследованию подвергают все более труднодоступные белки, что в свою очередь вызывает необходимость создания надежных методов количественного анализа. Интерес к колоночной хроматографии возрастает также в связи с выделением и получением необычных аминокислот, а также в связи с необходимостью предотвращения ошибок при определении аминокислотной последовательности. Понятия современный и классический метод используют здесь условно, поскольку новые методики обычно создают на базе стандартной аппаратуры примером может служить автоматический анализ ДНФ- и ДНС-аминокис-лот [3, 4]. Насколько известно, до сих пор не пытались использовать скоростную хроматографию высокого разрешения для разделения производных аминокислот, хотя некоторые соединения, например ДНС-аминокислоты, являются для этого метода довольно удобным объектом. Производные аминокислот использовали в структурном анализе белков крайне неравномерно. По-видимому, всеобщее увлечение ДНФ-аминокислотами проходит окончательно, уступая место повышенному интересу [c.360]


    Для разделения аминокислот (гидролизата белка) методом тонкослойной хроматографии широкое применение находят пластинки, покрытые тонким слоем ионообменной смолы полистирольной природы с сульфокислотными группировками (типа Дауэкс 50X8 ) или ионообменной целлюлозой. Такие пластинки выпускаются промышленностью, например Фиксион 50x8 (Венгрия), или могут быть приготовлены в лаборатории. В этих пластинках катионообменная смола находится в Na-форме. Пластинки стабильны в водных и органических растворителях, инертны по отношению к окислителям и восстановителям, но подвергаются воздействию щелочей и концентрированных кислот. [c.133]

    СКОЛЬКИХ лет служила материалом для упаковки колонок, и на ней впервые удалось почти полностью разделить энантиомеры. (В 1944 г. было опубликовано сообщение о том, что основание Тре-гера разделено на колонке с лактозой длиной 0,9 м [2].) Разделяющая способность полисахаридов, в частности целлюлозы, была впервые обнаружена при попытке разделить рацемические аминокислоты методом бумажной хроматографии [3—5]. При этом выяснилось, что эти соединения в некоторых случаях дают два пятна на бумажной хроматограмме. Далглищ развил свою теорию трехточечного взаимодействия в 1952 г. на базе данных о бумажной хроматографии рацемических аминокислот [6]. Известны и другие ранние работы по непосредственному разделению энантиомеров аминокислот посредством бумажной хроматографии [7] и тонкослойной хроматографии на целлюлозе (ТСХ) [8]. Все это способствовало использованию целлюлозы и ее производных, а также крахмала и циклодекстринов в хиральной ЖХ. В настоящее время в качестве потенциальных хиральных сорбентов изучается ряд природных полисахаридов. [c.108]

    Высокая чувствительность метода обратного изотопного разбавления с радиореагентом, а также селективность, которую обеспечивает применение индикаторного изотопа, позволяют определять микроколичества смесей первичных и вторичных аминов. Эти методы широко применяли в определениях различных аминокислот в биологических образцах [85—88]. В работе [86], в частности, описано использование этих методов для оценки содержания одиннадцати таких соединений в 1 мг белка. Метод с пипсилхлоридом применялся для анализа гистамина, причем в этом анализе проводилось четыре цикла перекристаллизации соответствующего производного с целью его очистки до получения постоянного значения удельной радиоактивности. После проведения этого анализа было предложено [89] применять данный метод для определения любого амина, который дает кристаллический замещенный д-иод-бензолсульфамид. Этим же методом оценивались микрограммные количества 2,4-диоксипиримидина и его 5-метильного производного [90]. Для разделения пипсильных производных в дополнение к бумажной хроматографии применялись жидкофазная колоночная хроматография [91] и тонкослойная хроматография [92]. Хроматографию на бумаге применяли также для оценки радиохимической чистоты реагента [93]. [c.310]

    Применяют также [185] метод тонкослойного ионофоре-за и двумерный комбинированный метод тонкослойного ионофореза и хроматографии на стеклянной пластинке на слоях силикагель — гиис, кизельгур — гинс и окись алюминия — гипс для ионофорезного 1аздолония аминов и аминокислот и силикагель — гинс — для их комбинированного ионофорезного и хроматографического разделения. [c.97]

    Открытие в 1944 г. метода бумажной хроматографии (БХ), чрезвычайно расширившего возможности обнаружения, идентификации и разделения малых количеств веществ, означало подлинную революцию в химии, особенно в биохимии. Этот метод был открыт Консденом, Гордоном, Мартином и Синджем, которые разработали и применили его для анализа белковых гидролизатов, т. е. смесей аминокислот. Последние два из перечисленных авторов были удостоены Нобелевской премии за открытие распределительной хроматографии. В последующие 10 лет метод БХ был значительно усовершенствован и получил такое распространение, что нельзя было представить без него работу какой-либо химической или биохимической лаборатории. Однако с 1952 г. БХ начала постепенно вытеснять ее младшая сестра — тонкослойная хроматография (ТСХ), которая оказалась эффективнее благодаря возможности более быстрого проведения эксперимента, большей пригодности для препаративных работ и более широким возможностям обнаружения (включая применение коррозионно-активных реагентов). В настоящее время ТСХ используется чаще, чем БХ, в примерно 5 и более раз. [c.58]

    Устранение такого несоответствия между возможностями изучения индивидуального соединения и возможностями выделения его из сложной смеси связано с развитием хроматографических методов. В первую очередь это касается трех разновидностей метода хроматографии — бумажной, тонкослойной и газо-жидкостной,— которые появились почти через полвека после первых успешных опытов Цвета [1] в 1901—1904 гг. Открытие и развитие метода бумажной хроматографии [2] создало прочную базу для анализа и разделения сложных смесей аминокислот, пептидов, липидов и нуклеотидов, что значительно расширило возможности биохимических исследований. В известной мере аналогичная техника тонкослойной хроматографии [3, 4] на закрепленных и незакрепленных с.лоях сорбентов ускорила исследования в области синтетической органической химии и в ряде прикладных областей химии и химической технологии. [c.5]

    В настоящее время хроматография является одним из методов, наиболее щироко используемых для фракционирования белков. Первоначально этот метод был разработан для фракционирования низкомолекулярных соединений - Сахаров и аминокислот. Наибольщее распространение получила распределительная хроматография - метод, нащедщий щирокое применение для разделения небольших молекул. В общей форме этот метод состоит в следующем. Каплю образца наносят на специальную бумагу (хроматография на бумаге) или пластинку стекла или пластмассы, покрытую тонким слоем инертного сорбента, например, целлюлозы или силикагеля (хроматография в тонком слое или тонкослойная хроматография). Затем такую пластинку одним концом помещают в смесь растворителей (например, воды и спирта). По мере движения растворителей по пластинке, они подхватывают те молекулы образца, которые растворяются в них. Растворители выбирают таким образом, чтобы они связывались сорбентом по-разному. В результате молекулы образца, более растворимые в связанном растворителе, движутся медленнее, а другие, более растворимые в слабо сорбированном растворителе, движутся быстрее. Через несколько часов пластинку сущат, окрашивают и определяют положение различных молекул (рис. 4-44). [c.211]


Смотреть страницы где упоминается термин Разделение аминокислот методом тонкослойной хроматографии: [c.17]    [c.315]    [c.315]    [c.114]    [c.315]    [c.75]    [c.271]    [c.490]   
Смотреть главы в:

Практикум по аналитической химии и физико-химическим методам анализа -> Разделение аминокислот методом тонкослойной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Методы разделения

Тонкослойные методы

Хроматография аминокислот

Хроматография как метод разделения

Хроматография методы

Хроматография разделение

Хроматография тонкослойная

Хроматография, методы тонкослойная



© 2025 chem21.info Реклама на сайте