Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал митохондрий и хлоропластов

    Удерживание в неоднородном электрическом поле белков и нуклеиновых кислот с сохранением их биологической активности свидетельствует о возможной роли этого явления в живой клетке. Общеизвестно, что клеточная стенка неоднородна ио своему составу, а следовательно, и по диэлектрической проницаемости и имеет довольно высокий электрический потенциал [ б, 17, 474]. Мембраны клеточных органелл (митохондрий, хлоропластов) и бактерий содержат молекулярные электрические генераторы [87], причем величина генерируемой трансмембранной разности электрических потенциалов достигает существенных значений— 100--300 мВ. Поэтому вполне резонно допустить существование в клеточных структурах неравномерного неоднородного электрического поля, аналогичного создаваемому нами в эксперименте, с высокой напряженностью и градиентом потенциала, и предположить его влияние на процесс удерживания, локализацию и работу биологически активных соединений, особенно высокомолекулярных. [c.228]


    Потенциал митохондрий и хлоропластов [c.12]

    Перенос электрона через асимметрично ориентированные фотосистемы I и II создает большой протонный градиент через мембрану тилакоидов. Реакция среды в полости тилакоидов становится выраженно кислой-pH приближается к 4, Индуцированный светом трансмембранный протонный градиент составляет примерно 3,5 единицы pH. Как обсуждалось ранее (разд. 14.5), протонодвижущая сила Лр складывается из градиента pH и мембранного потенциала. В хлоропластах почти вся величина Ар создается градиентом pH, тогда как в митохондриях более значителен вклад мембранного потенциала. Причина этого различия состоит в том, что мембрана тилакоидов полностью проницаема для С1 и Mg . Индуцируемый светом перенос Н" в полость тилакоидов сопровождается или [c.192]

    Мембраны не являются пассивными полупроницаемыми оболочками, но принимают прямое и очень важное участие во всех функциях клетки. Мембраны обеспечивают активный транспорт вещества, идущий в направлении, противоположном градиенту химического или электрохимического потенциала. В мембранах локализованы основные биоэнергетические процессы — окислительное фосфорилирование и фотосинтез. АТФ синтезируется в мембранах митохондрий, в тилакоидных мембранах хлоропластов зеленых растений. Есть основания думать о связи между рибосомами, на которых синтезируется белок, и мембранной системой эндоплазматического ретикулума. Репликация ДНК и хромосом, по-видимому, происходит с участием мембран. [c.333]

    В одной из предыдущих глав было показано, как под влиянием энергии поглощенного света в хлоропластах начинается перенос электронов по цепочке соединений, иногда значительно отличающихся по величине окислительно-восстановительного потенциала, а значит, и энергии. Если обратиться к аналогичному процессу электронного транспорта в митохондриях (который был расшифрован раньше, чем у хлоропластов), то можно убедиться, что эта энергия затрачивается на образование АТФ. Этот процесс получил название окислительного фосфорилирования, поскольку был сопряжен с окислением дыхательных субстратов кислородом. [c.186]

    Некоторый эволюционный потенциал, т. е. возможность увеличения кинетического совершенства, содержится в ускорении диффузии посредством создания более резких градиентов концентрации. Эту возможность мы уже рассматривали. Она реализуется при образовании структурно-организованных ансамблей ферментов, например, в митохондриях и хлоропластах. Однако таким способом, посредством игры на градиенте , достигается скорее экономия материалов, чем макроскопический выигрыш в суммарной скорости процессов. Поэтому показателем дальнейшего прогресса становится скорость диффузии, скорость потока метаболитов, превращаемых в вещество данного вида. Прогресс можно теперь измерять в см/сек. Диффузионный барьер не может быть преодолен чисто химическим путем. Дальнейшее совершенствование биохимических механизмов (катализа, маршрутов реакций) оказывается бесполезным. [c.142]


    Системы, образующие А яН+ из внешних ресурсов, называются первичными генераторами, а системы, образующие электрохимический потенциал за счет внутренних ресурсов, — вторичными генераторами А яН+. К первичным генераторам А яН+ относятся мембраны фотосинтезирующих бактерий (которые преобразуют энергию света в A[.iH+ с помощью трех различных механизмов циклической редокс-цепи, нециклической редокс-цепи и с помощью бактериородопсина), компоненты электрон-транспортной цепи митохондрий, мембраны хлоропластов. [c.121]

    В функционировании биоэнергетических систем важное место принадлежит транспорту протонов. Перенос электронов в энергосопрягающих мембранах митохондрий, хлоропластов и бактерий сопровождается трансмембранным переносом Н+ и образованием градиента электрохимического потенциала этого иона А[ан+5 который включает электрический (мембранный потенциал) и концентрационный (градиент pH) компоненты  [c.162]

    В настоящее время протонные АТФазы выделены практически из всех типов сопрягающих мембран митохондрий, хлоропластов, хроматофоров. АТФазный комплекс, или Н+-АТФаза, — обратимый фермент, обладающий как АТФ-синтетазной, так и АТФазной функциями. Синтез АТФ осуществляется за счет АрН+, а гидролиз АТФ приводит к тому, что протонная АТФаза сопряженно генерирует трансмембранную разность электрохимического потенциала Н . Таким образом, в Н -АТФазе происходят процессы по общей схеме [c.217]

    Среди клеточных органелл с высокодифференцированной собственной мембранной системой ведущее место без сомнения занимают митохондрии и хлоропласты, с которыми связано осуществление важнейших энергетических процессов растительной клетки. Однако если микроэлектродное измерение потенциала является достаточно сложной задачей уже при анализе электрических свойств плазмалеммы и тонопласта у высших растений, то при переходе на субклеточный уровень методические трудности становятся почти неразрешимыми. В частности, по свидетельству В.П. Скулачева [247], попытки измерить потенциал митохондрий путем введения микроэлектрода до сих пор остаются безуспешными. В то же время некоторым исследователям удалось осуществить измерение трансмембранного потенциала крупных хлоропластов ряда растительных объектов, прежде всего пеперомии [33,337,598]. Его величина в опытах на интактных клетках (измеренная по отношению к цитоплазме) и на изолированных хлоропластах (измеренная по отношению к среде) варьирует от 10 до —бОмВ. [c.12]

    Потенциал митохондрий и хлоропластов. Пока попыгки измерения потенциала на митохондриальных мембранах с помощью МЭ остаются безуспешными. Оценки величины потенциала митохондрий у высших растений спеггрофотометрическим методом дали величины 120-140 мВ. [c.85]

    В работах лабораторий Либермана п Скулачева расположение дыхательной цепи определялось по ее способности образовывать мембранный потенциал. В среду вводились различные доноры и акцепторы электронов, не проникающие сквозь мембрану. Оказалось, что эти вещества взаимодействуют лишь с цитохромом с в митохондриях. Установлено, что транспорт протонов и (или) электронов по дыхательной цепи действительно происходит. В других экспериментах определена локализация компонентов в мембране митохондрий. На рис. 13.10 показано вероятное расположение цепн. Согласно хемиосмотической гипотезе, любая сопрягающая система должна создавать электрохимический потенциал понов Н ". Действительно, опыты с проникающими синтетическими ионами показали возникновение А1 5 в митохондриях, СМЧ, хлоропластах (см. гл. 14) и мембранах бактерий. В то же время теория Митчелла встречается с трудностями и вызывает возражения. Блюменфельд приводит аргументы, показывающие невозможность построения машины Митчелла в конденсированной фазе. В такой машине АТФ-синтетаза использует разность концентраций протонов в водной фазе по обе стороны мембраны для выполнения внешней работы. Это — энтропийная машина, получающая энергию из термостата в форме кинетической знергип протонов. Нротоны движутся преимущественно по градиенту концентраций и передают свои импульсы подвижным частям машины разность потенциалов А1 5 расходуется на создание [c.437]

    Механизм фотосинтетического фосфорилирования сходен с синтезом АТФ в процессе окислительного фосфорилирования в митохондриях. Система переносчиков электронов интегрирована в мембрану тилакоида таким образом, что перенос пары электронов создает поток протонов с наружной поверхности тилакоида внутрь, pH на внутренней поверхности тилакоида может достигать 4 и ниже. Таким образом, на мембране создается электрохимический протонный потенциал АцН+, который используется интегрированной в мембрану Н -зависимой сиитетазой для синтеза АТФ (рис. 16.3). Структура этого фермента аналогична митохондриальной АТФ-синтетазе (гл. 15) и обычно обозначается как СРд—СР Символ С означает, что этот ферментный комплекс локализован в хлоропластах сЫогорШз ) и, подобно митохондриальной Н" -зависимой-АТФ-синтетазе, включает гидрофобный, интегрированный в мембрану тилакоида компонент (СРд) и гидрофильный комплекс (СР]), катализирующий синтез АТФ. [c.215]


    В гл. 7 было показано, что степень сопряжения для системы с термодинамической линейностью можно получить из отношения входного потока в состояниях статического напора и установившегося потока [уравнение (7.47)]. К сожалению, в митохондриях и хлоропластах трудно поддерживать установившийся поток по фосфорилированию или транспорту протонов. В первом случае аденилаткиназная реакция не позволяет достаточно сильно снизить отношение АТФ/АДФ, а во втором — быстрое нарастание электрического потенциала обычно подавляется даже в сильно забуференных системах. Однако состояние статического напора можно получить за несколько секунд. Роттенберг [29] предложил метод определения степени сопряжения, который снимает проблему установившегося потока без слишком сложных измерений. Этот подход основан на классическом определении коэффициента дыхательного контроля. Он включает сопоставление статического напора (состояние 4 для окислительного фосфорилирования) и подходящего стандарт- [c.327]

    Свойства белковых систем, катализирующих транспорт через сопрягающие мембраны, обычно сильно отличаются от свойств бислойных участков как в присутствии, так и в отсутствие ионофоров. Транспортные белки обладают многими свойствами, присущими ферментам они проявляют стереоспецифичность, часто их можно специфически ингибировать, они генетически детерминированы. Последнее обстоятельство делает невозможной ту степень обобщения, которая применима к транспорту через бислой. Например, если РССР (рис. 2.5) индуцирует протонную проводимость в митохондриях, то можно смело полагать, что его эффект будет тем же в случае хлоропластов, бактерий или искусственного бислоя. В отличие от РССР транспортный белок может быть специфическим не только для данной органеллы, но и для органеллы из определенной ткани. Например, переносчик цитрата существует в митохондриях из печени, где он участвует в переносе промежуточных соединений синтеза жирных кислот (разд. 8.3), но отсутствует в митохондриях из сердца. Иногда утверждают, что для белковых транспортных систем характерна кинетика насыщения. Хотя в некоторых случаях это может быть верным, в целом кинетика транспортных процессов настолько сложна (особенно если они зависят от мембранного потенциала), что интерпретация ее требует большой осторожности. [c.40]

    Транспортабельность — необходимое свойство конвертируемой формы энергии. Поскольку разность электрических потенциалов является достоянием мембраны в целом, она должна объединять тысячи вментирован-ных в нее генераторов и потребителей протонного потенциала в единую систему энергообеспечения бактерии, митохондрии или хлоропласта. [c.174]

    Примером окислительно-восстановительных реакций in vivo является перенос электронов в хлоропластах и митохондриях. В обоих случаях в системе имеется цепь переносчиков, по которым передаются электроны (и,возможно,ионы водорода). В митохондриях электроны от НАД - Н или сукцината в конечном счете переносятся на кислород, а в хлоропластах существует нециклический процесс передачи электронов от молекулы воды к НАДФ+. Каждому из переносчиков, участвующих в этом процессе, присущ свой окислительно-восстановительный потенциал. В митохондриях переносчик с самым отрицательным окислительно-восстановительным потенциалом стоит в цепи первым, а с самым положительным — последним. Электроны передаются по цепи от одного переносчика к другому, и в результате этого процесса энергия запасается в виде АТФ. В хлоропластах процесс передачи осложнен тем, что в двух местах транспортной цепи электрон переходит от соединения с более положительным окислительно-восстановительным потенциалом к соединению с более отрицательным потенциалом на этих этапах используется энергия солнечного света. Остальные переносчики в цепи располагаются в порядке возрастания их потенциалов, и электроны от предьщущего переносчика к последующему могут переходить самопроизвольно. Суммарный же процесс нуждается в притоке энергии и не может происходить в темноте. [c.230]

    Большинство таких индикаторов ярко окрашены в окисленном состоянии и бесцветны в восстановленном (хотя имеются и исключения, такие как соли тетразолия и виологены). Эти индикаторы можно применять для определения окислительно-восстановительного потенциала отдельного раствора, а также исполь вать в качестве доноров или акцепторов электронов, причем в этом случае можно следить за скоростью реакции окисления или восстановления. По скорости восстановления красителя, наблюдая за окраской раствора, определяют также ферментативную активность (например, сукцийатдегидрогеназы). Применение индикаторов дает возможность изучать процессы переноса электронов в хлоропластах, митохондриях, бактериальных и дрожжевых клетках и даже в тканевых срезах и гомогенатах. Для определения степени окисленности или восстановленности обычно применяют спектрофотометрические методы, хотя можно следить и за поглош,ением или выделением газа, если оно имеет место в процессе реакции. [c.232]

    Как оказалось, и в растительных клетках действие биомедиаторов также связано с изменением ионной проницаемости плазмалеммы и сдвигом мембранного потенциала. Ацетилхолин и биогенные амины влияют на ряд процессов и на уровне отдельных органелл. Первые исследования в этом направлении были выполнены на изолированных митохондриях, выделенных из различных органов животных. Например, обнаружено торможение набухания митохондрий (10 М). Ацетилхолин тормозил также набухание и хлоропластов в изотонической среде, причем в большей мере на свету, чем в темноте. Поскольку высокие концентрации (10 М) тормозят процесс, то можно предположить, что холиновый эфир увеличивает проницаемость хлоропластов для ионов. Но об этом подробнее мы также поговорим в последующих разделах. [c.28]

    В митохондриальном матриксе, так же как и в строме хлоропласта, величина pH близка к 8, но она создается за счет переноса протонов из органеллы в цитозоль (pH около 7), а не в какой-то ее внутренний компартмент. Поэтому градиент pH относительно шл и протоно движущая сила на внутренней митохондриальной мембране, близкая к такой же силе на тишкоидной мембране хлоропласта, в основном создается за счет суммарного мембранного потенциала (см. разд. 7.1.7). Однако и в митохондриях, и в хлоропластах каталитический участок АТР-синтетазы находится в большом компартменте органеллы (соответственно в матриксе и в строме), который имеет pH около 8,0 [c.475]


Смотреть страницы где упоминается термин Потенциал митохондрий и хлоропластов: [c.151]    [c.293]    [c.420]    [c.227]    [c.18]    [c.58]   
Смотреть главы в:

Биоэлектрогенез у высших растений -> Потенциал митохондрий и хлоропластов




ПОИСК





Смотрите так же термины и статьи:

Хлоропласт



© 2025 chem21.info Реклама на сайте