Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разница температур

    Выбор давлений и температур в колоннах также обусловливается требованиями к качеству и состоянию целевых продуктов, составом исходного сырья, располагаемыми хладо- и теплоносителями и т, п. За исходный параметр часто принимают температуру конденсации паров в верхней части колонны при атмосферном давлении. Если температура конденсации паров при атмосферном давлении слишком низка, давление повышают. Например, пропан при атмосферном давлении конденсируется при —42 °С, при повышении же давления до 1,9 МПа его температура конденсации становится равной +55 °С. Снижение давления в колонне ниже атмосферного (вакуум) диктуется [ге-обходимостью уменьшения температуры кипения нижнего продукта либо из-за технических трудностей достижения требуемого уровня температуры, либо из-за разложения продукта. Выбор температур определяется также рациональной разницей температур охлаждающей среды и паров в верхней части колонны, теплоносителя и остатка — в нижней части колонны, ибо от этого во многом зависит поверхность теплообменных аппаратов. [c.106]


    В работе [46] предложена упрощенная модель пристенной теплоотдачи в зернистом слое. Особенностью коэффициента пристенного теплообмена в зернистом слое является то, что он отнесен к Д/ст — разнице температуры стенки и температуры, полученной экстраполяцией профиля температуры в слое на стенку [48]. Таким образом, дополнительное термическое сопротивление конвективному теплопереносу в пристенной зоне относится к бесконечно тонкой пленке на стенке коэффициент определяется как величина, обратная этому термическому сопротивлению. Разница температур Д ст вызывает дополнительный тепловой поток между стенкой и зернами, прилегающими к ней. При рассмотрении этого потока приходится отказаться от модели слоя как квазигомогенной среды и учитывать, что движущая разница температур в этом случае больше Д/ст, так как зерна имеют конечные размеры. Поскольку должен быть отнесен к Д/ст, то из термического сопротивления теплопереносу между стенкой и зернами нужно вычесть термическое сопротивление общему потоку теплоты у стенки в полосе шириной 0,5 (от стенки до центров первого ряда зерен).- В соответствии с этим получена формула [46] [c.128]

    Регулируя давление пара в циркуляционной системе автоматическим регулятором, можно очень точно держать заданную температуру процесса (в пределах 1°). Чтобы обеспечить надежную работу теплоотводящей системы, учитывая низкую теплопроводность катализатора (разница температур между водой и катализатором составляет 5—8°), объем, заполненный катализатором, разделяют па узкие секции при помощи системы железных пластин, перпендикулярных водяным трубкам. Реактор выполняется довольно массивным. [c.90]

    Схемы с тепловым насосом на верхнем и нижнем продуктах имеют ограниченное применение и в основном при небольшой разнице температур верха и низа колонны, т. е. для разделения близкокипящих смесей. [c.112]

    При небольшой разнице температур по колонне или до промежуточных сечений колонны затраты энергии на сжатие газа сравнительно невелики. Однако при разделении близкокипящих смесей необходимо создавать больщие тепловые потоки циркулирующего хладоагента для обеспечения высокого флегмового числа в колонне. Применение тепловых насосов считается экономически оправданным, когда для конденсации верхнего продукта необходимо использовать специальные хладоагенты или охлажденную воду, когда температура низа колонны не выше 300 °С и когда температура верха колонны выше 40— 120 °С. Использование тепловых насосов наряду с заметным снижением энергетических затрат позволяет также понижать рабочее давление в колонне при сохранении достаточно высоких температур конденсации и охлаждения потоков. [c.113]


    В работе [121] теоретически и экспериментально показано, что эффективность теплообмена в системе параллельных каналов при ламинарном режиме течения в сильной степени зависит от отклонений в размерах этих каналов, которые характеризуются среднеквадратичной величиной (стандартом) а, а также от рода граничных условий теплообмена. Даже при относительно небольших значениях а, эффективное значение Ыпэ получается в несколько раз ниже, чем для одиночного канала. Этим, в частности, объяснено отличие опытных данных, полученных на системе параллельных каналов компактного теплообменника, от предельного значения Ниэ тш- В зернистом слое флуктуации порозности могут привести к образованию застойных зон и исключению из активного теплообмена значительной части зерен при этом возникает разница температур зерен по сечению слоя, что еще больше усложняет картину переноса теплоты. В результате действия этих факторов полученное в опыте значение Ыи, является не только и не столько функцией критерия Кеэ, сколько самой схемы и техники эксперимента и граничных условий теплообмена. [c.162]

    IV. 6. Описание процессов теплопереноса в зернистом слое с учетом разницы температур фаз [c.168]

    При дальних перевозках разница температур воды и воздуха в пути может быть значительной, 20°С и даже больше. Если нефть занимает какую-то емкость (в данном случае танк) полностью, то такое изменение температуры может оказаться достаточным, чтобы в результате расширения нефти эту емкость разорвало. В то же время если танк заполнен лишь частично, то нефть в нем будет болтаться, особенно при качке, могут произойти гидравлические удары нефти о стенки танка, что тоже может привести к его разрушению. Поэтому вдоль танкера в виде вертикальной щели сделана так называемая расширительная шахта, сообщающаяся с каждым из расположенных ниже танков. При наливе танки заполняют нефтью полностью, а расширительную шахту только частично. При увеличении объема нефти вследствие повышения температуры избыток ее идет на пополнение шахты, а при уменьшении температуры в ней уровень нефти понижается. Вследствие относительно небольшого объема расширительной шахты и небольшой ее ширины гидравлические удары незначительны и не опасны. [c.79]

    Применение электронно-вычислительной техники в последние годы позволило решать численными методами многие задачи, связанные с процессами переноса в зернистом слое, при -расчете этих процессов в промышленных аппаратах и при обработке опытных данных, полученных на экспериментальных установках. При этом появилась возможность использовать двухфазные модели зернистого слоя, учитывающие разницу температур между обеими фазами и теплообмен между ними. Ниже рассмотрены некоторые задачи, связанные с методами экспериментального исследования теплопереноса в зернистом слое и требующие учета гетерогенной структуры слоя. [c.168]

    Из рис. IV. 24 следует, что разница температур фаз в рассматриваемом процессе составляет заметную величину использование квазигомогенной модели приводит к завышению конвективной составляющей примерно на 40%- [c.169]

    Установлено, что флегмоное число должно лежать в пределах от 2ч1 N до 3/2 Л где N — число теоретических тарелок колонки. Влияние флегмового числа сильнее сказывается в колонках с большим чис.юм теоретических тарелок, а также при перегонке смеси веществ с незначительной разницей температур кипе [c.150]

    Экстракция [5.24, 5.31, 5.33, 5.55]. Метод основан на различной растворимости извлекаемого химического соединения в воде и растворителе, используемом в качестве экстрагента. Чем лучше извлекаемое соединение растворено в экстрагенте, чем больше разница температур кипения между ними, чем более химически устойчиво извлекаемое соединение к экстрагенту и чем меньше оно растворяет в себе экстрагента, тем более эффективен этот метод. Экстрагент должен равномерно распределяться в объеме обрабатываемой воды, обладать высоким коэффициентом распределения, иметь низкую растворимость в воде и отличающуюся от воды плотность. Как правило, применение метода экономически оправдано при концентрациях извлекаемых соединений более 3 кг/м . [c.484]

    ИЗ которых выбираем значение второго Тг = 381,2° К, так как для двух почти одинаковых молекул невозможна такая огромная разница температур, при которых теплоемкость обеих молекул одинакова (5228,3 — 300 = 4928,3 ). [c.210]

    Скорость подъёма температуры и повышение концентрации О2 выбирается из расчёта того, чтобы разница температур между входом и выходом из реакторов (показаниями многозонных термопар) не превышала 4 0 °С на всех этапах регенерации.  [c.59]

    При исследовании реакций с высокими тепловыми эффектами в реакторах с неподвижным слоем твердого катализатора не всегда удается поддерживать строгое постоянство температуры по длине или радиусу трубки. Перепады температур могут достигать при этом 40—50° С. Такая же разница температур используется и при проведении изотермических экспериментов для обеспечения раздельной оценки предэкспонентов и энергий активации. Поэтому, казалось бы, неизотермический эксперимент, так же как и изотермический, позволит оценить раздельно кинетические константы. [c.436]


    В процессах экстрактивной ректификации регенерация разделяющего агента за редкими исключениями производится путем ректификации, чему благоприятствует обычно больщая разница температур кипения разделяющего агента и компонентов заданной смеси. Это обусловливает более простое технологическое оформление этих процессов по сравнению с непрерывными процессами азеотропной ректификации. Для промышленных установок экстрактивной ректификации типичной является принципиальная схема, изображенная на рис. А,а (стр. 35). Отклонения от этой схемы возникают при образовании разделяющим агентом азеотропов с отгоняемыми компонентами. Связанные с этим усложнения технологической схемы обусловлены необходимостью разделения азеотропов, способы осуществления которого были рассмотрены при обсуждении процессов азеотропной ректификации. В качестве типичного примера процесса экстрактивной ректификации в гл. IV (стр. 288) описывается метод выделения бутадиена из бутан—бутадиеновых смесей. Обязательной частью промышленной установки для экстрактивной ректификации является оборудование для очистки разделяющего агента от примесей, образующихся при длительной работе (смол, продуктов коррозии аппаратуры и др.). Наиболее распространенным приемом такой очистки является дистилляция, [c.208]

    Вследствие разницы температур наружной поверхности материала и его внутреннего слоя в уравнения должен вводиться поправочный коэффициент к (меньший единицы) обычно к = 0,85—0,95 (в зависимости от размеров слоя п крупности частиц материала). [c.233]

    В большинстве установок разница температур точки росы и начала кипения для продукта верха колонны незначительна. Давление в колонне равно сумме давлений на выходе из конденсатора и гидравлическому сопротивлению в конденсаторе и линии отвода паров из колонны. [c.141]

    Из уравнения (63) видно, что величина поправки зависит от разности между общим давлением и давлением паров чистого компонента при температуре системы. Эта разность возрастает с увеличением разницы температур кипения компонентов. [c.22]

    Как следует из уравнения (125), при разделении бинарной системы с большими отклонениями от закона Рауля третий компонент в определенном диапазоне концентраций может действовать как разделяющий агент даже в том случае, когда Л1р—Лгр<0. Из уравнения (123) вытекает, что эффективное действие таких разделяющих агентов возможно в тех случаях, когда отношение давлений паров компонентов заданной бинарной системы достаточно велико. Указанные разделяющие агенты могут быть применены в частности для разделения систем, компоненты которых, несмотря на большую разницу температур кипения, образуют азеотропы или в определенной области концентраций имеют состав пара, мало отличающийся от состава жидкости. Отсюда вытекают следующие положения, на основании которых должен производиться выбор разделяющих агентов. [c.43]

    Другой возможный вариант использования данных о свойствах азеотропов смеси для выбора разделяющих агентов заключается в следующем. Если два близкокипящих компонента образуют, каждый в отдельности, азеотропную смесь с минимумом температуры кипения с третьим веществом (предполагаемый разделяющий агент), то тот компонент, азеотропная смесь которого имеет более низкую температуру кипения, будет иметь большие отклонения от закона Рауля. Относительная летучесть этого компонента будет возрастать также при прибавлении гомолога предполагаемого разделяющего агента. При выборе последнего с помощью изложенного метода результаты тем надежнее, чем меньше разница температур кипения разделяемых компонентов. [c.58]

    В некоторых случаях подобрать в качестве разделяющего агента органическую жидкость, изменяющую относительную летучесть компонентов заданной смеси в желательном направлении,— затруднительно или даже невозможно. Из-за этого, в частности, при получении безводного этанола методом азеотропной ректификации используются разделяющие агенты (например, углеводороды), увеличивающие относительную летучесть не этанола, а воды, хотя в системе этанол—вода она является высококипящим компонентом. Принимая во внимание значительную разницу температур кипения воды и этанола, несомненно, желательно было бы использовать разделяющие агенты, увеличивающие относительную летучесть последнего. Такие соображения заставили исследователей обратиться к изысканию мине- [c.66]

    Рассмотрение поведения систем, относящихся к различным группам, позволяет установить некоторые общие положения, имеющие значение для практического применения метода азеотропной ректификации. Из приведенных ректификационных диаграмм следует, что разделение положительных азеотропов более просто, чем отрицательных. Наиболее желательными разделяющими агентами являются вещества, образующие только бинарные азеотропы с одним или обоими компонентами заданной смеси. В последнем случае азеотропы должны иметь достаточную разницу температур кипения. В качестве агентов для разделения отрицательного азеотропа на компоненты наиболее целесообразно применять вещество с температурой кипения ниже температуры кипения этих компонентов, образующее только положительный азеотроп с одним из них или положительный азеотроп с одним и отрицательный с другим. Применение в качестве разделяющих агентов веществ, дающих с компонентами заданной смеси тройные азеотропы (положительные, отрицательные и седловидные), менее целесообразно, хотя в ряде случаев и позволяет осуществить выделение одного из компонентов. [c.142]

    Метод ступенчатой конденсации паров в дефлегматоре, состоящем из системы труб, при понижающейся температуре охлаждения позволяет разделять и получать фракции компонентов с большой разницей температур кипения (рис. 1706). Примеры расчетов для подобной чистой частичной конденсации, при которой образующийся конденсат сразу же выводится из системы, представ- [c.245]

    При механической вентиляции побудителем движения воздуха является механическая энергия, создаваемая вентилятором с помощью электродвигателя. Механическая вентиляция бывает приточной и вытяжной. При естественной вентиляции побудителем движения является разница температур наружного воздуха и воздуха, находящегося внутри помещения. Загрязненный воздух удаляется через специально оборудованные в перекрытиях дефлекторы, аэрационные фонари и фрамуги в верхних частях оконных проемов. При естественном воздухообмене свежий воздух поступает через двери, окна и проемы с жалюзпйными решетками в стенах. [c.115]

    С помощью автоматического стенда с вакуумным насосом (рис. 377) во время испытаний с чистыми веществами в интервале давлений от 300 до 1 мм рт. ст. была достигнута точность регулирования 0,1 мм рт. ст. [43]. Такая точность для перегонки фенола при давлении 20 мм рт. ст. соответствует разнице температур кипения 0,1 °С. Если, например, при разделении изомеров ксилола при давлении 70 мм рт. ст. необходимо определять темпера- [c.445]

    Температуры / и к вспомогательного холодильного цикла выбирают в зависимости от температуры и требований, предъявляемых технологией к конечному значению температуры продукта на выходе из испарителя. Необходимо стремиться к возможно большей разности /к — /ь однако чрезмерное увеличение /к сопровождается ростом давления конденсации Рк (см. точку 2 на диаграмме состояния рис. П-5), что в свою очередь увеличивает величину теплового потока при охлаждении газообразного холодильного агента, а следовательно, и нагрузку конденсатора. Низкие значения хотя и увеличивают логарифмическую разницу температур в испарителе, но увеличивается отношение давлений и мощность компрессорного агрегата. Для одноступенчатого холодильного цикла можно рекомендовать / = 40—50 °С, /и = О—15 °С. [c.46]

    При резком повышении (снижении) температуры ухудшается )ханическая прочность катализатора. Для сохранения прочностных ойств катализатора не рекомендуется изменять температуру более 1М на 40 °С в 1 ч. Значительная разница температур между катали-тором и циркулирующим газом может вызвать разрушение струк- ры катализатора допустимый градиент температур между газом чг ртицами катализатора не должен превышать 150 °С. [c.69]

    При Кеэ < 1 экспериментальные трудности определения X также очень велики. В работе [29], результаты которой приведены в [1], наблюдалось резкое увеличение Я/ уже при минимальных расходах газа через слой в среднем получено Я 1,5Яоэ при Кеэ = О— 1. Следует обратить внимад1ие на то, что в наших опытах наблюдалось аналогичное явление (рис. .5, а). Увеличение коэффициента Я при вязкостном режиме течения в зернистом слое по сравнению с коэффициентом Хоэ для непроду-ваемого слоя можно объяснить неравномерностью распределения газа по сечению, связанной с неравномерностью порозности и температуры в слое. При движении газа вниз, навстречу потоку теплоты возможно даже образование застойных областей. В работе [29] показано, что Я зависит не только от Кеэ, но и от диаметра элементов слоя. Следовательно, резкое увеличение л при Кеэ = 0 — 1 нельзя объяснить вкладом конвекции в процесс переноса теплоты или разницей температур газа и слоя, как это делается в [29], поскольку в этих случаях критерий Ке, однозначно характеризует процесс (см. также стр, 162), [c.126]

    II. Определение пристенного коэффициента теплоотдачи при одномерном потоке теплоты по радиусу аппарата [31] совместно с коэффициентом теплопроводности (раздел IV. 3, метод II, стр. 114). Разница температур Af r определяется непосредственным замером профиля температуры в слое. [c.130]

    В большинстве работ, выполненных методом локального моделирования теплообмена, использовался один шар-калориметр. В работе Дентона и соавт. [100] вводилась поправка на контактный и лучистый теплоотвод от калориметров, а также потери теплоты по проводам. Эта поправка определялась по мощности нагревателя при скорости газа, равной нулю, и разнице температур калориметра и газа в опытах. При этом конвективная составляющая теплоотдачи принималась равной Ыитш = 2. Для средних значений Ыиэ получены зависимости, близкие к формуле (IV. 71), с отклонением для шаров большего диаметра до 25%. [c.159]

    Решение дифференциальных уравнений для двухмерного зернистого слоя представляет значительные трудности. В работе [128] получено численное решение с учетом экзотермической реакции в слое с сильным тепловьш эффектом, однако расчетная разница температур фаз не превышает 2°С при максимальной разности температур слоя и стенки трубы 52 °С.. Определение коэффициентов теплопроводности в зернистом слое на основе двухфазной модели [44] дало результаты на 4% выше, чем для квазигомогенной модели, в интервале Re, = 40 — 500. [c.170]

    Общие соображения показывают, что разность между температурами жидкой и твердой фаз в процессе фильтрации должна быстро исчезать из-за огромной поверхности теплообмена между флюидами и скелетом, так что температуры допустимо считать одинаковыми. Более точный ответ может дать следующая оценка. Характерный размер, поры / имеет порядок 10 м или менее, температуропроводность, насыщенной пористой среды х обычно порядка 10 м /с. Тогда выравнивание температуры между флюидом и скелетом должно происходить за время t = / /х = 10 с. Если нас интересуют фильтрационные процессы, с характерными временами такого порядка, то разницу температур флюида и скелета необходимо учитывать. В противном случае можно считать, что Т,., = Т. Мы так и будем делать, поскольку для технологических процессов разработки месторождений время 10 с ничтожно мало(.о Запишем теперь соотношение, выражающее баланс энергии дл системы жидкость - пористая среда. Пористую среду будем считат .. недеформируемой. Вследствие малости скоростей фильтрации пренебрежем изменением кинетической энергии флюида. Тогда, если 7-внутф ренняя энергия некоторого объема флюида и скелета, П-энергия флюида в поле потенциальных сил (в нашем случае-поле силы тяжести), тср/ согласно первому началу термодинамики имеем  [c.316]

    Реакция проходит при температуре 450—500°С на катализаторе РегОз + СггОз. Схема установки дана на рис. 1Х-41. Тепловой баланс в данном случае показывает, что при использовании поверхностного подогревателя воды 5 и достигнутой в скруббере разнице температур между нагревающимся и охлаждающимся газами 2°С в систему возвращается 45,8%, а с паром (инжектор 2) поступает 54,2% общего количества телоты. [c.390]

    С повышением температуры плотность нефтепродуктов уменьшается. Поэтому в случае измерений плотпости при температурах выше 20 °С следует поправку, умноженную на число градусо отклонения, прибавить к видимой плотности при измерениях плотности при температурах ниже 20 °С произведение поправ1 и на разницу температур следует вычесть из видимой плотности. [c.128]

    Было установлено, что при ректификации I4 происходит двойное разделение изотопов. Относительная летучесть смеси примерно составляет 1,00125, что соответствует разнице температур кипения около 0,036 °С (см. табл. 36). Эф кт накопления в верхней части колонны наблюдался также при ректификации хлороформа, бензола и метанола. При ректификации хлороформа, кроме того, происходит концентрирование в кубе, а при ректификации метанола в кубе накапливается Ю (табл. 37) [43]. [c.234]


Смотреть страницы где упоминается термин Разница температур: [c.95]    [c.116]    [c.111]    [c.126]    [c.130]    [c.216]    [c.269]    [c.278]    [c.139]    [c.326]    [c.138]    [c.151]    [c.58]    [c.170]   
Смотреть главы в:

Руководство по техническому обслуживанию холодильных установок и установок для кондиционирования воздуха -> Разница температур




ПОИСК





Смотрите так же термины и статьи:

Описание процессов теплопереноса в зернистом слое с учетом разницы температур фаз

Ошибки при пониженной разнице температур между включением и отключением установки



© 2025 chem21.info Реклама на сайте