Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Критерии предельного состояния металла

Рис. П5.1. Деформационные критерии предельных состояний металла Рис. П5.1. Деформационные <a href="/info/1814677">критерии предельных состояний</a> металла

    Если при испытаниях моделей контактное упрочнение реализуется полностью, то можно говорить о вязком разрушении. В некоторых случаях, из-за контактного разупрочнения металла, вязкое разрушение возможно и при Р<Ркр. В этом случае поле линий скольжения изменяется таким образом, что предельная нагрузка будет меньшей, чем Ркр. Не исключена возможность разрушения мягкой прослойки в результате потери устойчивости пластических деформаций. С использованием критерия Ткр производят оценку предельного состояния моделей с вырезами (или трещинами) из пластических, но деформационно слабо упрочняющихся материалов [1]. В модели с односторонним вырезом (плоская деформация) поле линий скольжения состоит из двух наклонных под углом 45° к оси образца плоскостей, исходящих из кончика надреза. Равенство работ на приращение скольжения по указанным плоскостям и от внешней нагрузки дает следующие значения критических напряжений  [c.130]

    ПРИЛОЖЕНИЕ 5. КРИТЕРИИ ПРЕДЕЛЬНОГО СОСТОЯНИЯ МЕТАЛЛА [c.30]

    При наличии дефектов и повреждений оборудования, характеристики которых не удовлетворяют требованиям научно-технической документации, и изменении свойств металла, не предусмотренном ТУ, оценивают фактическую нагружен-ность конструкций и согласно [36, 57, 65, 88, 92, 105, 125-132] проводят дополнительный расчет прочности их элементов с учетом выявленных негативных факторов. При этом уточняют механизмы повреждений металла оборудования, его ПТС (в том числе основные), устанавливают критерии предельного состояния элементов конструкций. Основными ПТС, как правило, являются дефекты сварных соединений несплошности в основном металле оборудования коррозионные повреждения  [c.166]

    Перед разрушением металла уровень эмиссии может падать. Использование момента достижения акустической эмиссией максимальных значений в качестве критерия предельного состояния материала может приводить к значительным погрешностям. В данной серии испытаний пик эмиссии наблюдался в диапазоне напряжений, составляющих 50-70% от разрушаю- [c.194]

    При наличии дефектов и повреждений, превышающих требования НТД, и изменении свойств металла, выходящих за пределы ТУ, проводят оценку фактической нагруженности объекта и уточненные расчеты прочности элементов конструкции согласно [30, 31, 35, 36, 45, 49, 88, 97, 99, 100, 101, 110, 129, 130] с учетом имеющихся дефектов и повреждений, изменений свойств металла и режимов нагружения. При этом уточняют механизмы повреждений и ПТС, устанавливают определяющие ПТС и критерии предельного состояния. Основные ПТС дефекты в сварных соединениях несплошности в основном металле оборудования коррозионные повреждения трещины в основном металле и сварных соединениях толщина стенки оборудования и его элементов твердость эрозионный и кавитационный износы водородное и коррозионное растрескивания деформация оборудования или его элементов. Дополнительными ПТС являются механические характеристики металла оборудования и его элементов химический состав характеристики макро- и микроструктуры коэффициенты запаса прочности. [c.223]


    Применительно к наиболее нагруженной точке (на самом деле всегда подразумевается некоторый малый элемент металла, мысленно выделенный вокруг точки ) рассматриваются две основные категории предельных состояний разрушение и исчерпание несущей способности (Приложение 5). В обоих случаях используются деформационные критерии предельных состояний и, соответственно, деформационные параметры (8о— объемная деформация, е,— интенсивность деформаций, 8] — наибольшая деформация удлинения, — угол подобия девиатора деформаций) напряженно-деформированного состояния (п. 4.1). [c.13]

    Критерий Ткр широко применяется для пластических материалов с малым деформационным упрочнением (для идеально-пластического металла). При значительном упрочнении металла оценку предельного состояния моделей производят на основе неустойчивости пластических деформаций. Установив функциональную зависимость с учетом характера деформационного упрочнения и используя условие неустойчивости, находят критические силовые и геометрические параметры. Заметим, что найденные таким образом критические параметры не являются характеристиками разрушения, а лишь отвечают моменту перехода из устойчивого (равномерного) пластического деформирования в неустойчивое (неравномерное). Тем не менее результаты анализа неустойчивости деформаций находят широкое применение для оценки несущей способности конструкций и полезны при исследовании разрушения материалов, моделей и конструкций с концентраторами напряжений при статическом и малоцикловом нагружении, в частности, моделей с трещинами. [c.132]

    Предельное состояние конструкции с группой несвязанных водородных расслоений, образующих область взаимодействующих расслоений, определяют, применяя критерий, аналогичный использованному в [10] для оценки работоспособности труб с глубокими коррозионными язвами. Этот критерий допускает распространение язв в глубь металла на 80% толщины стенки при небольшой площади поражения поверхности. Были проведены испытания давлением стальных сосудов (03-10 мм, длина 10 мм и толщина стенки 19 мм) с водородным расслоением металла на глубине 10 мм со стороны внутренней поверхности. Давление в три раза превышало расчетное разрушающее давление (при условии, что рабочая толщина стенки равна 10 мм). В результате произошла лишь пластическая деформация материала сосудов, что свидетельствует о возможности их эксплуатации при наличии расслоений металла в случае своевременного контроля пораженных участков [24]. [c.129]

    Предельным состоянием полимера часто называют такое напряженное состояние, при котором дальнейшее повышение напряжений сопровождается процессом вынужденной высокоэластической деформации, являющейся аналогом пластической деформации в металлах. При совмещении в одном аналитическом выражении условий хрупкого разрушения и вынужденного высокоэластического течения можно получить так называемые обобщенные критерии предельного напряженного состояния. Необходимость в разработке таких обобщенных критериев возникает в связи с тем, что в ряде случаев при изменении вида напряженного состояния или условий эксплуатации происходит изменение условий предельных переходов. [c.63]

    Отказ (событие, заключающееся в нарушении работоспособного состояния), вызванный деформацией и разрушением металла оборудования, называют механическим отказом (МО). Признаками МО (недопустимое изменение признаков нормальной работы объекта) являются снижение рабочего давления и производительности, выход продукта на поверхность и др.. При этом за критерии МО (признаки отказа, которые являются необходимыми и достаточными для суждения о нарушении работоспособности) принимаются недопустимые по условиям эксплуатации простой объекта, утечка продукта и др. Под характером МО понимается конкретное материальное изменение объекта при его переходе в неработоспособное состояние, например, разгерметизация (свищ, разрыв), чрезмерная деформация (потеря устойчивости первоначальной формы) и др. Причинами МО являются процессы накопления повреждений (усталость, коррозия, ползучесть, термическая флуктуация, старение). Повреждения вызывают отказ, когда какой-либо его характерный параметр (например, длина трещины) достигает своего некоторого предельного (критического) значения. Последствия отказа [c.62]

    Пряжение принимается некоторое критическое напряжение, определяющее устойчивость формы конструкции. Если конструкция имеет первоначальные несовершенства металла (например трещины), то предельные напряжения устанавливаются на основе критериев разрушения (критической интенсивности напряжений или Kj , критического раскрытия трещин 8с и др.). Рассмотрим пример определения расчетной толщины тонкостенного цилиндра (стенки 6 и радиусом R) с приборами по торцам и внутренним давлением Рв. Поскольку в нем реализуется плоское состояние (о1=2а2=РвК/б), то по первой и третьей теории прочности получаются одинаковые толщины б р бпр= Pb Dh/2[o]-Pb, где Он - наружный диаметр цилиндра. По четвертой теории 5 р- Pb-Dh/2,3[o]-Pb. Сравнение этих формул показывает, что толщина стенки, определённая по первой теории прочности, больше толщины стенки, определенной по четвертой теории прочности. Во многих случаях толщину стенки труб рассчитывают по первой формуле, так как она обеспечивает больший запас прочности труб Наличие сварных швов учитывается путем умножения допускаемого напряжения [о] на коэффициент прочности сварного шва ф. [c.500]


    Как было показано в 7.5 (см. рис.7.5.10), моделирование НДС металла в зоне вершины острого концентратора или трещины позволяет адекватно отразить гфоцесс деформирования реального конструктивного элемента из однородного металла. Там же показано, что критерием образования макротрещины может служить достижение предельного уровня пластической деформации е, , зависящего от жесткости напряженного состояния] (см. рис.7.5.15). Анализ дальнейшего изменения НДС после образования макротрещины дает возможность суди гь о направлении и темпе роста развивающейся трещины по мере возрастания нагрузки, то есть о характере разрушения. [c.533]

    Термодинамическая теория окислительного потенциала рассматривает окислительный электрод как индифферентный по отношению к раствору проводник электрического тока [6—12]. Поэтому в качестве электрода может быть применен любой, не взаимодействующий в данных условиях с раствором металл платина, золото, вольфрам, ртуть и т. д. Следствием термодинамической теории является деление систем на обратимые , в которых потенциал может быть измерен, и необратимые , в которых лотенциал измерить невозможно. Критерием обратимости или необратимости системы считается возможность или невозможность измерения в ней окислительного потенциала [7]. Величина окислительного потенциала в обратимой системе должна зависеть не от материала и состояния поверхности электрода, а только от концентрации и природы окисленных и восстановленных компонентов реакции [11]. Термодинамическая теория справедлива при условии достижения равновесия между окислительно-восстановительной системой и электродом. Термодинамическая теория не может, однако, характеризовать систему до наступления равновесия. Известно вместе с тем, что в слабых, т. е. имеющих слабую тенденцию вызывать потенциал на электроде, системах время установления потенциала может исчисляться не только часами, но и сутками [7—9, 17, 18]. К слабым системам относятся, как правило, системы молекулярно-водородные и в особенности кислородные. Впервые вопрос о кинетическом характере окислительного потенциала рассмотрен в работах Н И. Некрасова [19], где показано, что в случае достижения предельного потенциала в неравновесных системах или окислительного потенциала в равновесных, но медленно реагирующих системах, величина его определяется кинетическими факторами. Можно, однако, показать, что кинетические факторы имеют существенное значение не только при измерении окислительного потенциала в слабых системах — регулируя соответствующим образом кинетику установления потенциала, в принципе можно измерить окислительный потенциал в любых химически обратимых системах. [c.169]

    Критерии предельного состояния элементов с учетом локальной перенапряженности металла [c.32]

    НОЙ формы и др.). Таким образом, сопротивление деформированию носит устойчивый или неустойчивый характер. Устойчивое сопротивление деформированию обычно сопровождается с ростом внешней нагрузки (например, при нагружении монотонно возрастающей силой). Переход из устойчивого в неустойчивое состояние сопровождается снижением интенсивности роста или спадом внешней нагрузки и называется предельным состоянием, а параметры, соответствующие ему, - критическими (критическая сила, деформация, напряжение, энергия). Формы потери устойчивости сопротивления деформации разнообразны, например, переход металла из упругого в пластическое состояние, локализация деформаций (шейко-образование) при растяжении, потеря устойчивости первоначальной формы при действии напряжений сжатия и др. Разрушение нередко происходит при нормальных условиях эксплуатации конструкций, когда в целом металл испытывает макроупругие деформации. Такие разрушения, как правило, реализуются при наличии дефектов и конструктивных концентраторов. Последние вызывают локальные перенапряжения и образование микротрещин. Трещины в металле могут существовать и до эксплуатации конструкции, например, холодные и горячие трещины в сварном соединении. При рабочих нагрузках, вследствие действия временных факторов разрушения, происходит медленный, устойчивый рост исходных трещин и при определенных условиях наступает период неустойчивого (быстрого) распространения и окончательного разрушения. Определение критических параметров неустойчивости росту трещин является основной задачей механики разрушения. Критерии механики разрушения, как и феноменологические теории прочности, постулируются на основании какого-либо силового, деформационного или энергетического параметра К (рис.2.7). Условием неустойчивости тела с трещиной является КЖкр (быстрое распространение трещины). [c.76]

    Методы прогнозирования работоспособности длительно проработавших сварных аппаратов должны базироваться на таких критериях, которые бы учитывали временные процессы накопления повреждений в металле. Одним из основных аспектов решения проблем безопасности нефтегазохимических производств является дальнейшее совершенствование методологии оценки остаточного р>есурса безопасной работы оборудования, т.е. определения времени наработки оборудования до перехода его в предельное состояние при установленных режимах и условиях эксплуатации. [c.114]

    Выполнено исследование и обоснование выбора, достоверности методов контроля и качества программ обследования оборудования ГХК. По результатам анализа выборки данных о повреждениях и дефектах оборудования ГХК и трудов известных ученых определены ведущие механизмы повреждения элементов оборудования -коррозионное (эрозионное) изнашивание, СКРН и ВИР предельные состояния, реализуемые либо потерей герметичности за счет износа толщины стенки, либо хрупким разрушением за счет зарождения и развития трещин параметры состояния и их количественные и качественные критерии, определяющие возможность реализации предельного состояния оборудования. По результатам исследований выявляемости методами НК типичных дефектов металла и металлических изделий обоснован выбор и классификация методов контроля и оценки состояния элементов оборудования ГХК. К основным методам отнесены визуальный и измерительный акустические - ультразвуковая (УЗ) дефектоскопия и толщинометрия капиллярный, магнитный или токовихревой измерение твердости металлография расчетные. Основные методы позволяют обеспечить выявляемость заданных значений ПТС не ниже 70 % и/или их идентификацию (тип, размеры, форма и др.) с погрешностью не выше 10 %. Другие методы применяются в качестве дополнительных в зависимости от наличия данных о материальном исполнении, особенностях конструкции элементов и доступа к зонам контроля. [c.237]

    Классификация по дисперсности. Физические свойства вещества не зависят от размеров тела, но при высокой степени измельчения становятся функцией дисперсности. Например, золи металлов обладают различной окраской в зависимости от степени имельчения. Так, коллоидные растворы золота предельно высокой дисперсности имеют пурпурный цвет, менее дисперсные —синий, еще менее —зеленый. Есть основания полагать, что и другие свойства золейодного и того же вещества меняются по мере измельчения. Напрашивается естес5ренный критерий классификации коллоидных систем по дисперсности, т. е. разделение области коллоидного состояния (10 —10 см) на ряд более узких интервалов. Такая классификация была в свое время предложена, но она оказалась бесполезной, так как коллоидные системы практически всегда полидисперсны монодисперсные встречаются очень редко. К тому же степень дисперсности может меняться во времени, т. е. зависит от возраста системы. [c.215]


Смотреть страницы где упоминается термин Критерии предельного состояния металла: [c.154]    [c.39]    [c.15]    [c.273]    [c.184]    [c.276]    [c.12]   
Смотреть главы в:

Методические рекомендации по количественной оценке состояния магистральных газопроводов с коррозионными дефектами -> Критерии предельного состояния металла




ПОИСК





Смотрите так же термины и статьи:

Предельные состояния



© 2025 chem21.info Реклама на сайте