Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы химические изотопный состав

    Изотопный состав воды. Вода — продукт соединения двух химических элементов водорода и кислорода. Оба эти элемента имеют несколько изотопов. [c.10]

    Все физико-химические методы определения атомных масс (в том числе метод Канниццаро) дают величину элементной массы. Только для моноизотопных элементов, представленных единственным природным изотопом, элементная масса совпадает с изотопной. Современные точные физические методы установления атомных масс (например, масс-спектрометрия) позволяют получать значения изотопных масс. Поэтому для установления атомной (элементной) массы необходимо еще знать изотопный состав элемента. [c.16]


    Для твердого водорода остаточная энтропия при О К обусловливается существованием двух его модификаций пара- и орто-водорода. В связи с этим твердый водород также можно рассматривать как раствор (орто- и пара-водорода), энтропия которого не падает до нуля при О К- Наличие остаточной энтропии у СО (N0, N20) связано с различной ориентацией молекул СО в кристалле (ОС —СО и СО — СО). Так как атомы С и О близки по своим размерам, то эти два вида ориентации в кристалле должны обладать практически одинаковой энергией. Отсюда статистический вес наинизшего энергетического уровня отдельной молекулы равен 2, а для моля кристалла —2 . Поэтому остаточная энтропия СО должна быть величиной порядка / 1п2 = 5,76 Дж/(моль К). Сравнение значений стандартной энтропии СО, вычисленных на основании калориметрических измерений [193,3 Дж/(моль К)) и спектроскопических данных [197,99 Дж/(моль К)1. подтверждает этот вывод. Для твердых веществ, кристаллические решетки которых имеют какие-либо дефекты, 5(0) Ф 0. Значения остаточной энтропии у отдельных веществ, как правило, — небольшие величины по сравнению с 5°(298). Поэтому, если пренебречь остаточной энтропией (т. е. принять условно 5(0) = 0), то это мало повлияет на точность термодинамических расчетов. Кроме того, если учесть, что при термодинамических расчетах оперируем изменением энтропии при протекании процесса, то эти ошибки в значениях энтропии могут взаимно погашаться. Почти каждый химический элемент представляет собой смесь изотопов. Смешение изотопов, как и образование твердых растворов, ведет к появлению остаточной энтропии. Остаточная энтропия связана с ядерными спинами. Если учесть, что при протекании обычных химических реакций не изменяется изотопный состав системы, а также спины ядер, то остаточными составляющими энтропии при вычислении изменения энтропии Д,5 можно пренебречь. [c.265]

    Хотя в метеоритах найдены все элементы периодической системы Менделеева и установлен их исходный изотопный состав, все же наблюдаются существенные различия в распространенности химических элементов на Земле и в других космических телах, в том числе в метеоритах. [c.233]

    Возьмем в качестве примера элемент хлор. Изотопный состав хлора, добытого из солей морской воды, из различных минералов, выделенного из животных или растительных организмов и, наконец, из тщательно очищенных для исследовательских целей химических препаратов, во всех случаях оказывается тождественным 75,6% С1 и 24,4% С1 . Нетрудно подсчитать, что смесь изотопов хлора С1 и СР в таком соотношении приводит к известному значению атомной массы этого элемента 35,457. [c.23]


    Универсальность закона постоянства изотопного состава становится понятной, если учесть, что при геологических процессах практически не происходит изменения изотопного состава химических соединений. Таким образом, первоначальный изотопный состав химических элементов, определяющийся единственно энергетическими характеристиками ядер, остается неизменным. [c.24]

    В соответствии с примечанием 6 к данной группе и товарным позициям 2844 и 2845, термин изотопы охватывает не только изотопы в их чистом состоянии, но также и химические элементы, природный изотопный состав которых искусственно модифицирован обогащением элементов некоторыми их изотопами (что то же самое, что и обеднение элементов некоторыми другими изотопами), или превращением в ходе ядерных реакций некоторых изотопов в другие, искусственные изотопы. Например, хлор с атомной массой 35,30, полученный обогащением этого элемента изотопом хлора-35 до содержания последнего 85% (и, следовательно, обеднением изотопом хлора-37 до его содержания 15%), рассматривается практически как изотоп. [c.123]

    Термин абсолютная энтропия , часто применяющийся в литературе, имеет условный смысл так, при вычислении О о можно принять во внимание ядерный спин, существование изотопов и други эффекты. Эффект ядерного спина и изотопный состав элементов обычно не принимаются во внимание при вычислении энтропии, так как эти эффекты компенсируются при расчете химических реакций. Энтропия, вычисленная без учета этих эффектов, обычно называется практической энтропией. [c.302]

    Химический элемент может представлять собой совокупность изотопов, т. е. атомов одинаковой химической природы, но имеющих различную массу. Встречающиеся в природе элементы имеют, как правило, установившийся изотопный состав и, таким образом, определенную среднюю атомную массу. Однако в определенных условиях изотопный состав элемента может быть изменен. [c.7]

    ИЗОТОПНЫЕ ИНДИКАТОРЫ (меченые атомы) — вещества, имеющие отличный от природного изотопный состав и благодаря этому используемые в качестве меченых для изучения разнообразных процессов. Роль меченого атома выполняют стабильные или радиоактивные изотопы химических элементов, которые легко могут быть обнаружены и определены количественно. Метод И. и. можно использовать в сложных процессах перемещения, распределения и превращения веществ в любых сложных системах или непосредственно в живых организмах. Этот метод применяют в химии, биологии, медицине, металлургии, геологии, сельском хозяйстве, почвоведении, в технике и промышленности. Радиоактивные И. и. определяют при помощи счетчика илп ионизационной камеры нерадиоактивные изотопы регистрируют масс-спектрометрами. Для проведения исследования И. и. прибавляют к химическому соединению, смеси, удобрению, лакам и т. д., содержащим исследуемый элемент поведение И. и. соответственно характеризует поведение элемента в данном процессе. [c.106]

    КОСМОХИМИЯ (астрохимия) — раздел науки о космосе, изучающий химический и изотопный состав космических тел, а также межпланетной и межзвездной среды, распространенность химических элементов в космосе, процессы радиоактивного распада и ядерных реакций и др. Установлено, что в космосе имеются те же химические элементы, что и на Земле. [c.136]

    Необходимо заметить, что закон постоянства состава выполняется при условии, что образующие химическое соединение элементы моно-изотопны или же имеют строго постоянный изотопный состав. Это естественно, поскольку закон постоянства состава предусматривает постоянство атомной массы любого химического элемента, что возможно только при условии строгой определенности его изотопного состава. [c.9]

    Как и в закон постоянства состава, в закон кратных отношений существенные коррективы вносит изотопный состав химических соединений. Закон кратных отношений предусматривает постоянство атомной массы любого химического элемента, что возможно только при условии постоянства его изотопного состава. [c.10]

    Химические свойства изотопов одного и того же элемента практически не отличаются. В то же время одинаковые по строению, но различные по изотопному составу молекулы можно различать физическими методами. Самым общим различием таких молекул является различие в массах. Это позволяет олределять изотопный состав молекул с помощью масс-спектрометра. [c.27]

    С целью экономии места автор счел возможным не описывать изотопный состав химических элементов, за исключением водорода. В силу специфики химии радиоактивных элементов они выделены в самостоятельную главу. Исключение сделано для технеция, который [c.3]

    Закон постоянства изотопного состава. Громадный экспериментальный материал по определению атомных масс различных изотопов, а также по соотношению изотопов одного и того же элемента приводит к выводу, что изотопный состав химических элементов всегда постоянен, независимо от местонахождения элемента и того, в какое соединение входит данный элемент. Это положение является настолько общим, что получило наименование закона постоянства изотопного состава  [c.23]


    Изучение относительной распространенности изотопов показало, что изотопный состав химических элементов на Земле постоянен. Например, у хлора, извлеченного из морской воды и выделенного из минералов — апатита и других, атомный вес оказался одинаковым. То же самое обнаружено для никеля, железа, кремния, ртути, азота, сурьмы и меди. [c.85]

    Проведение исследовательских и технологических работ с применением стабильных изотопов, т. е. препаратов, изотопный состав которых отличается от природного, предусматривает прежде всего необходимость определения содержания (концентрации) стабильного изотопа в препарате. В этой главе будут рассмотрены основные методы качественного и количественного изотопного анализа, т. е. методы изучения изотопного состава химических элементов и методы определения относительного содержания стабильных изотопов в изотопных препаратах. [c.108]

    АТОМНЫЕ ВЕСА, ИЗОТОПНЫЙ СОСТАВ И СПИНЫ ЯДЕР ХИМИЧЕСКИХ ЭЛЕМЕНТОВ, РАССМАТРИВАЕМЫХ В СПРАВОЧНИКЕ [c.949]

    Изменение в системе будет происходить до тех пор, пока полностью не выровняется изотопный состав элемента в веществах, участвующих в обмене. Достижение равновесия не зависит от механизма процессов, приводящих к этому состоянию, поэтому перераспределение изотопов посредством обмена можно рассматривать как своеобразное смешение. Уравнение (10) справедливо для систем, сколь угодно далеких по физико-химическим свойствам от идеальных газов, например, оно справедливо для равнораспределения изотопов в твердом теле и в концентрированных растворах. Это же уравнение определяет величину энтропии перераспределения изотопов между разными положениями внутри молекулы и т. д. [c.14]

    ИЗОТОПОВ. Тем не менее к 1924 г. Астоном [73] был определен изотопный состав около 50 стабильных элементов значения массовых чисел и относительных распространенностей, использованные для расчета атомных весов, дали цифры,, хорошо согласующиеся с результатами химических определений. [c.15]

    Большинство химических элементов в природе состоит из смеси изотопов, причем изотопный состав у элементов различного происхождения почти всегда одинаков или отличается незначительно. Обогащая химическое соединение или смесь одним из стабильных изотопов исследуемого элемента, получают систему, где роль метки выполняет измененный изотопный состав вещества. В качестве стабильных изотопов часто используются изотопы легких элементов, таких как дейтерий, углерод-13, азот-15, кислород-18 и др. Количественное определение изотопного состава производится главным образом при помощи масс-спектрометров. Кроме того, известны методы определения изотопного состава по плотности, теплопроводности, показателям преломления последнее время находят применение измерения инфракрасных и высокочастотных спектров, а также ядерного магнитного резонанса. [c.8]

    Определение атомных масс элементов имеет исключительно важное значение для всех разделов химической науки. Атомная масса —это среднее значение относительных атомных масс изо-гопов элемента с учетом их процентного содержания в данном образце. При протекании химических реакций соотношение изотопов не меняется, поэтому атомная масса остается практически постоянной. Исключение составляет только свинец, который в различных соединениях имеет неодинаковый изотопный состав это зависит от месторождения. Свинец из урансодержащих руд имеет атомную массу 206. В минералах, в которых свинец образовался при распаде тория, атомная масса свинца ра в-на 208. В наиболее распространенном минерале свинца — свинцовом блеске РЬ5 —атомная масса РЬ равна 207,21. Таким об- [c.37]

    РЕАКЦИИ ХИМИЧЕСКИЕ, превращения одного или неск. исходных в-в (реагентов) в отличающиеся от них по хнм. составу или строению в-ва (продукты р-ции). В отлнчие от ядерных реакций, при Р. х. не изменяется общее число атомов в реагирующей сист., а также изотопный состав хим. элементов. Р. х. происходят при смешении или физ. контакте реагентов самопроизвольно, при нагревании, участии катализаторов (см. Катализ), действии света (см. Фотохимические реакции), электрич. тока (см. Электродные процессы), ионизирующих излучений (см. Радиационно-химические реакции), мех. воздействиях (см. Механохимические реакции), в низкотемпературной плазме (см. Плазмохимические реакции) и т. п. Превращения частиц (атомов, молекул) осуществляются при условии, что онн обладают энергией, достаточной для преодоления потенц. барьера, раэде-.пяющего исходное и конечное состояния сист. (см. Энергия активации). [c.499]

    Проведенные Томсоном исследования [99] положительно заряженных пучков ионов, приведшие к разделению изотопов химических элементов, были продолжены Астоном [б], который создал первый масс-спектрограф и определил изотопный состав различных соединений фотографическим методом. Примерно в тот же период были разработаны методы определения относительной распространенности изотопов Демпстером [23] и другими исследователями, особенно Ниром [76], которому удалось значительно повысить точность и надежность масс-спектрометра. [c.5]

    Естественные геохимические процессы имеют довольно сложный характер, где единичные процессы представляют скорее исключение. Некоторые периодически повторяющиеся циклические процессы в геохимических условиях могут вызвать значительное разделение изотопов, которое обнаруживается масс-спектрометрическими измерениями. Допускается, что в период образования Земли изотопный состав всех элементов был одинаков. Однако такое заключение носит весьма приближенный характер. В процессе охлаждения туманности солнечного состава и конденсации первых твердых фаз вполне могло происходить небольшое фракционирование некоторых легких Изотопов. Если судить по данным изотопного состава метеоритов, подобное разделение отчасти имело место для изотопов углерода. В течение геологической истории Земли изотопный состав ее химических элементов подвергался непрерывному изменению. Наиболее резкие изменения связаны с радиоактивными процессами и относятся к радиоактивным и радиогенным элементам. Значительно менее резкие изменения изотопного состава элементов происходили в верхних, горизонтах нашей планеты, в пределах биосферы, что связано с различием нзотоп- [c.385]

    Вариации в изотопном составе также важны для определения предела точности установления химических атомных весов элементов, если неизвестен их изотопный состав в исследуемых образцах. Кроме того, эти вариации связаны с предысторией образца. Часто можно провести довольно точную оценку отношений распространенностей изотопов в образце любого элемента, зная его происхождение. Интересно, что Тод [2004J изучил образец бора неизвестного происхождения и нашел, что отношение i B/ B в нем близко к буре из Турции. Позднее было установлено происхождение этого образца, подтвердившее вывод Тода. Нир [1496] установил, что отношение С/ С в изучаемом им образце карбоната натрия свидетельствует о связи его с известняком. Исследование происхождения образца показало правильность его предположения. [c.101]

    Кислород является, вероятно, наиболее изученным элементом. Причина этого связана с важной ролью кислорода в жизненных процессах, с использованием его в качестве стандарта в химической шкале атомных весов и широкой распространенностью в виде соединений с другими элементами. Большое значение имеет тот факт, что моря представляют собой огромный резервуар кислорода. Локальные процессы обмена в них проходят при почти постоянном уровне содержания Содержание в атмосфере отличается удивительным постоянством образцы, собранные из приповерхностных слоев из удаленных один от другого пунктов и взятые на высоте до 51,6 км, отличаются по отношению лишь на 0,025% [506]. Это отношение в общем больше на 3% отношения изотопов в пресной воде, а отношение изотопов в океанской воде примерно на 0,5% больше, чем в пресной. Колебания в содержании и дейтерия, наблюдаемые для образцов из воды полярных и других океанов и между образцами из моря и пресноводных бассейнов, вызываются следующими причинами. Превращение воды в лед приводит к обогащению изотопом и уменьшению содержания дейтерия [1171, 1996]. Таким образом, можно ожидать (и это подтверждается экспериментально) изменения плотности воды из приполярных областей, где имеются большие массы льда. Испарение воды вызывает концентрирование тяжелых изотопов кислорода и водорода в остатке. Таким образом, пресная вода, которая образуется при испарении и конденсации морской воды, должна содержать меньше и В, чем морская [413, 592]. Были проведены измерения концентрации дейтерия в большом числе образцов океанской воды. Полученные значения лежат в пределах 0,0153—0,0156%. Для образцов пресной воды было отмечено, что в небольших странах, подобных Англии, где осадки представляют собой первичный продукт испарения морской воды, приносимой ветром, концентрация дейтерия равна приблизительно 0,0152% [347], т. е. близка к содержанию его в воде из океана. Для стран с обширной сушей, подобных США, где большая часть приносимых водяных паров конденсируется в пути , измеренная концентрация дейтерия оказалась равной 0,0133% [698]. В том же ряду измерений было обнаружено аналогичное фракционирование изотопов кислорода, что дает возможность проверить цифры, так как график зависимости соотношения между изотопами водорода и кислорода должен представлять собой прямую линию, наклон которой определяется отношением упругости паров НгО НОО к НгО Н Ю. Эпштейн и Маэда [591] нашли, что содержание в поверхностных морских водах колеблется в пределах 6% и что нижнее значение, как и предполагалось, соответствует воде, разбавленной водой из растаявших ледяных полей. Современная точность в определении содержания позволяет определять изотопный состав кислорода, различный для разных океанов. Возросшая чувствительность определения была использована также при изучении океанических палеотемператур, причем полученные результаты свидетельствуют о важности очень точных определений для изучения колебаний распространенности изотопов в природе. Возросшая [c.102]

    Метод изотопного разбавления можно применять только при сохранении тол<дества изотопного состава элемента в различных хи-лшческих превращениях и идентичности исходных физико-химических условий, при которых находятся изотопы. Пусть раствор содержит л г неактивного элемента, который хотят определить. Добавляют к раствору г того же элел ента, находящегося в том же химическом состоянии, но меченного радиоактивным изотопом. Активность добавленного вещества 1 , измеренная в произвольных, но постоянных для данной работы условиях регистрации, должна быть известна. После равномерного распределения радиоактивного изотопа по всей системе выделяют некоторую часть г определяемого элемента и измеряют активность выделен юй части. В силу химическо идентичности, изотопный состав выделенного соединения будет такой же, как изотопный состав соединения в смеси после прибавления индикатора  [c.214]


Смотреть страницы где упоминается термин Элементы химические изотопный состав: [c.108]    [c.220]    [c.16]    [c.19]    [c.16]    [c.19]    [c.47]   
Учебник физической химии (1952) -- [ c.408 ]

Учебник физической химии (0) -- [ c.448 ]

Основы общей химии Т 1 (1965) -- [ c.78 ]

Основы общей химии том №1 (1965) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопный состав

Элемент химический



© 2024 chem21.info Реклама на сайте