Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртуть производные

    Связи п—М образуются при взаимодействии пГг с ртутЬ-производными карбонилов металлов [84]  [c.39]

    Давно известно алкилирование и арилирование ртути производными бора. Связь углерод — бор, особенно в борных кислотах, легко разрывается при действии неорганических и органических солей ртути, а также других металлов, что нашло довольно широкое применение в синтезе практически важно, что реакцию можно проводить в водном растворе. [c.62]


    Задача состояла в проверке полноты замещения ртути на таллий в кар-борановом производном. Из спектра видно, что только третий продукт практически не содержит примеси ртуть-производного и может быть отдан на элементный анализ. [c.258]

    Кадмий в щелочах практически не растворяется, а в кислотах — менее энергично, чем цинк ртуть же растворяется только в кислотах, являющихся достаточно сильными окислителями за счет своих анионов. При этом могут получиться производные как Hg(H), так и Hg (I). Например, при действии на Hg концентрированной азотной кислотой получается Hg(N03)2  [c.632]

    Производные ртути (в том числе простое вещество) чрезвычайно ядовиты  [c.638]

    Меркурирование является реакцией электрофильного замещения с низкой избирательностью. Она показывает соотношение реакционных способностей толуол бензол, равное 7,9, и идет с сильным замещением в -положение у толуола [52]. Реакция протекает также и в отсутствие катализаторов. При этих условиях отношение реакционных способностей несколько ниже, получаются большие выходы о- и лг-изомеров [53]. Необычно высокая степень о-замещения, наблюдаемая при меркурировании бензойной кислоты и подобных ей производных, приписывается образованию соли или координационного соединения иона ртути с заместителем, что ставит ион ртути в положение, особенно выгодное для атаки в о-ноложение. [c.459]

    К I классу (санитарно-защитная зона 1000 м) относят производства связанного азота (аммиака, азотной кислоты, азотнотуковых и других удобрений) полупродуктов анилинокрасочной промышленности бензольного и эфирного рядов (при суммарной мощности более 1000 т/год) едкого натра и хлора электролитическим способом концентрированных минеральных удобрений органических растворителей и масел (бензола,. толуола, ксилола, фенола и др.) ртути, технического углерода, серной кислоты, олеума, соляной кислоты, сероуглерода, суперфосфата, фосфора, ацетилена, капролактама, волокна нитрон, цианистых солей, синильной кислоты и ее производных и др. [c.121]

    Антисептики — это органические вещества, предотвращающие развитие в маслах биологических процессов при попадании в них грибков и бактерий. Такие продукты называют иногда биоцидами или ингибиторами микробиологического поражения нефтепродуктов. Эффективными антисептиками являются некоторые производные бора, уксуснокислые соли первичных алифатических аминов, металлорганические вещества (производные ртути, олова и др.). Бактерицидным действием обладают и некоторые антиокислительные, противокоррозионные и другие присадки. [c.309]


    Для извлечения из нефтяных фракций сульфидов многие исследователи пользовались водным раствором ацетата ртути, так как образующиеся комплексы сульфидов алифатического и цикланового строения растворимы в воде. Таким методом были получены сульфиды из иранской нефти [51]. Смесь сернистых соединений и ароматических углеводородов, выделенная из разбавленного водой кислого гудрона тракторного керосина иранской нефти, ректифицировали. Узкие фракции обрабатывали водным 0,7—1,0 М раствором ацетата ртути. К водному слою для разложения растворимых комплексов сульфидов добавляли горячий 5 н. раствор соляной кислоты. Сульфиды отделяли от водного слоя и нейтрализовали раствором щелочи. Производные тиофена, присутствовавшие во фракции, не растворялись в водном слое, а оставались в сернисто-углеводородной фазе. [c.119]

    Таким образом, витамин В12 и его производные — это замечательные катализаторы, обладающие разнообразными функциями и участвующие в многочисленных необычных биохимических процессах в различных организмах. Превращения ртути в окружающей среде — только один из многих примеров действия витамина Би. [c.397]

    При действии лития на алифатические или ароматические производные ртути образуются соответствующие литиевые соединения  [c.196]

    Своеобразное каталитическое действие солей ртути, вероятно, основывается на том, что сначала образуются ртутные производные ацетилена, которые затем при действии кислоты распадаются на ацетальдегид и ртутную соль. Этот метод в настоящее время при.меняется для технического получения ацетальдегида и продуктов его дальнейших превращений (уксусной кислоты, ацетона, спирта). [c.80]

    Высокая устойчивость б5 -электронной пары ртути накладывает отпечаток на все ее свойства и обусловливает ее существенное отличие от цинка и кадмия. В частности, в противоположность соединениям Zn и d большинство соединений Hg мало устойчивы. Далее, в отличие от цинка и кадмия для ртути характерны производные кластерного радикала Hg +. В радикале Hg + атомы связаны между собой ковалентной связью —Hg—Hg—, т. е. снова возникает конфигурация 6s . В производных Hg2+ степень окисления Hg принимают равной +1. [c.580]

    Производные ртути (И) проявляют окислительные свойства [c.585]

    По чувствительности к удару выделенные Стефановичем металлические производные нитросоединений близки к гремучей ртути (производные тротила, тринитробензола, тетрила) и только производные тринитроксилола близки в этом отношении к азиду свинца. К трению эти аморфные вещества мало чувствительны. Температура вспышки для некоторых металлических производных а-тринитротолуола определена около 50° (например для тротилата аммония). [c.135]

    В противоположность описанным результатам, получаемым с фенолом и антрахиноном и их производными [47, 51], такие катализаторы, как ртуть, оказывают незначительное направляющее влияние на вхождение сульфогруппы при сульфировании угловодородов [60]. Так, например, о-ксилол в отсутствие ртути дает исключительно 4-сульфокислоту, тогда как в присутствии ртути он дает от 20 до 25% 3-сульфокислоты. При сульфировании толуола Лоер и.Ода [62] обнаружили, что при использовании газообразного ЗОз совсем не образуется л -изомера (добавлялись РаОб или уксусный ангидрид для связывания воды), в то время как при применении серной кислоты всегда образовывалось около 5% лt-изo-мера. [c.519]

    Окисление является следующей побочной реакцией, более часто наблюдающейся при сульфировании полициклических углеводородов и.пи полиалкилированных производных бензола, особенно нри повышенных температурах. Этому типу реакции отдавалось предпочтение на более ранней стадии развития промышленного процесса окисления нафталина олеумом до фталевого ангидрида в присутствии ртути в качестве катализатора. [c.525]

    Аналогичные выражения справедливы для теплоемкости п коэффициента теплового расширения. Структурные величины обычно сильно зависят от температуры. При комнатных (и более низких) температурах структурные вклады аномально велики. Так, в случае сжимаемости KstrlKoa ., b [170], в то время как для большинства других жидкостей это отношение меньше единицы [171]. В конечном счете все аномалии воды обусловлены лабильностью структуры воды в отношении воздействия теплом или давлением. В ряду наиболее характерных аномалий воды — резко нелинейная температурная зависимость объема, сжимаемости и теплоемкости с положительной второй производной. Это проиллюстрировано на рис. 3.7 на примере объема и сжимаемости воды и, для сравнения, сжимаемости нормальных жидкостей — спиртов и ртути [172—175]. [c.52]

    Этим путем удалось выделить и охарактеризовать несколько индивидуальных алифатических и циклических сульфидов (тиофанов). Этим же путем показано наличие производных тиофана общей формулы С На 8 [4] в бензиновом дистилляте иранской нефти. Методом сульфирования для выделения и общей характеристики сернистых соединений пользовались и в исследовательских работах [5—7]. Из бензино-керосинового дистиллята кокай-тинской нефти Узбекской ССР был получен и охарактеризован а-метилтиофан [8]. Методом сульфирования керосинового дистиллята иранской нефти (140—250° С) 0,4 объемн. % 98%-ной серной кислоты выделено и идентифицировано 27 индивидуальных сернистых соединений [9]. Этот метод чрезвычайно сложен, о чем свидетельствует схема, приведенная на рис. 7. Индивидуальные сернистые соединения выделяли в виде комплексов с ацетатом ртути, которые затем разлагали. Строение сернистых соединений устанавливали по физическим свойствам и химической характеристике с помощью инфракрасных спектров. Спек-трометрировали углеводороды, полученные гидрогено-лизом сернистых соединений на никеле Ренея. Таким сложным путем идентифицированы моно- и бициклические сульфиды, диалкилсульфиды и тиофены. [c.97]


    Из металлических производных ацетилена в первую очередь следует упомянуть медные и серебряные соли, выпадающие в виде нерастворимых осадков при пропускании ацетилена в аммиачные растворы солей меди (закисной) или серебра. Ацетиленид меди (СгСиа) коричнево-красного цвета, ацетиленид серебра СаА о белого цвета и чувствителен к действию света. Оба соединения в сухом состоянии очень взрывчаты, особенно серебряная соль, которая может разложиться со взрывом даже при простом прикосновении. Ацетилениды меди и серебра благодаря их полной нерастворимости применяются для открытия небольших количеств ацетилена в других газах, например Е светильном газе. Не менее взрывоопасен и ацетиленид ртути, который обраг уется при пропускании ацетилена в щелочной раствор иодида ртути и иодида калия  [c.81]

    Монометиларсин СНзАзНа (т. кип. 2°) и диметиларсин ( H3)jAsH (т. кип. 35°) не образуют солей с кислотами, очень легко окисляются и жадно поглощают кислород воздуха. Триметиларсин также не обладает основными свойствами, но легко превращается в производные пятивалентного мышьяка, присоединяя галоиды, кислород или серу кроме того, он способен присоединять соли, например хлорную ртуть  [c.181]

    Янтарный ангидрид применяется для получения многих красителей (например, родамина S, стр. 769). Ртутное производное сукцинимкда используется как лекарственный препарат ртути. Сырая янтарная кислота (из янтаря) тоже находит медицинское применение, впрочем незначительное. [c.344]

    Прибавляя ртуть или, лучше, сульфат ртути, можио значительно изменить выходы образующихся изомеров. Это относится вообще к сульфированию производных бензола и связано с тем, что при действии ртути образуются ртутьорганпческне соединения, в которых затем ртутный остаток замещается сульфогруппой. [c.533]

    Hg и 75%, при производстве цветных металлов и сплавов - 90% Hg и 10% Hg . Ртуть поступает в атмосферу и в виде метилиров шных производных, при этом на воздухе они быстро превращаются в элементную форму. Концентрационные уровни ртути для городских зон составляют [c.105]

    Основные механизмы выведения тяжелых металлов из атмосферы -вымывание с атмосферньп<и осадками и осаждение иа подстилающую поверхность В осадках эти элементы присутствуют в растворимой (соли, комплексные ионы) и малорастворимой формах. Соединения ртуги в атмосферных осадках классифицируются на две фуппы Первая группа п]эедставлена ее элементной формой и органическими соединениями (например, Hg( Hз)2), а вторая - неорганическими производными (например, Hg2 l2). Основное количество ртути в осадках содержится в виде металлорганических соединений. Следует заметить, что в атмосферных осадках, как правило, преобладают водорастворимые формы тяжелых металлов, что, вероятно, обусловлено наличием в атмосфере кислых оксидов серы и азота, способствующих образованию растворимых соединений. По степени обогащения атмосферных осадков металлы располагаются в следующем порядке 7п > РЬ > Сё > N1 В работе [197] показано, что средние уровни свинца в осадках составляют 12 мкг/л, адя сельских районов (не подверженных урбанизации) 0,09 мкг/л для полярных областей и акваторий океанов 44 мкг/л для урбанизированных районов. [c.105]

    В некоторых случаях распад протекает столь быстро, что производные Hg + получить не удается. Например, по обменным реакциям HgaS и Hga( N)2 не образуются, так как сразу же распадаются на свободную ртуть и нерастворимый HgS и малодиссоциирующий Hg( N)a. [c.586]

    Применение фазоселективного выпрямителя в переменнотоковой полярографии дает возможность полностью устранить емкостный ток, поскольку он опережает фарадеев ток (остаточный ток, обусловленный электродной реакцией деполяризатора). Ход перемениотоковой полярограммы становится понятным пр сопоставлении переменнотоковой полярограммы с постояннотоковой (рис. Д. 120). На постояннотоковой полярограмме (верхняя диаграмма) чистому фоновому электролиту соответствует кривая 1 (штриховая линия). Подъем на этой криво/г при. положительном потенциале ртутного капельного электрода обусловлен анодным растворением ртути, а при большом отрицательном значении потенциала— выделением катионов фонового электролита. При добавлении к фоновому электролиту деполяризатора ход кривой 2 вначале будет таким же. Вблизи потенциала полуволны деполяризатора возникает волна, а затем на кривой снова наблюдается горизонтальный участок до значения потенциала разложения фонового электролита. Небольшое переменное напряжение, наложенное на линейно возрастающее постоянное напряжение переменнотоковой полярографии (в точках а, б, в), вызывает в области небольшого возрастания постояннотоковой полярограммы (а и в) незначительное изменение силы тока, но большое изменение потенциала полуволны в области б, обозначенное б. Поскольку, как указано выше, протекает только переменный ток, на переменнотоковой полярограмме (нижняя диаграмма) наблюдаются только эти изменения. Для обычных деполяризаторов возникают максимумы при значениях их потенциалов полуволн. Таким образом,, в идеальном случае переменнотоковая полярограмма совпадает с первой производной соответствующей постояннотоковой полярограммы (рис. Д.121), а также с дифференциальной полярограммой. Существенным отличием является очень небольшой максимум в случае необратимого электродного процесса,, поскольку малого значения переменного напряжения уже недостаточно для окисления и восстановления соответствующего количества деполяризатора на электродах. Поэтому применение переменнотоковой полярографии ограничено обратимостью электродных реакций. Однако этот метод имеет то преимуще- [c.302]

    Отгонка аммиака используется в широко известном методе определения азота в органических соединениях по Кьельдалю. В простейшем варианте этого метода пробу обрабатывают при нагревании концентрированной серной кислотой в присутствии солей ртути (катализатор), в результате чего органические соединения окисляются до СО2 и Н2О, а азот переходит в ЫН4Н504. После охлаждения к остатку добавляют раствор щелочи и отгоняют ЫНз в отмеренный объем титрованного раствора кислоты, а затем определяют избыток кислоты, не вошедшей в реакцию с аммиаком, и рассчитывают массу азота в пробе по формуле обратного титрования. Методом Кьельдаля можно определять азот в аминах, аминокислотах, алкалоидах и многих других азотсодержащих соединениях. Некоторые соединения можно проанализировать по методу Кьельдаля только после предварительного разложения или восстановления хлоридом олова (И) или цинковой пылью (азотсоединения, производные гидразина и т. д.) [c.215]


Смотреть страницы где упоминается термин Ртуть производные: [c.385]    [c.597]    [c.597]    [c.194]    [c.385]    [c.637]    [c.323]    [c.300]    [c.11]    [c.393]    [c.396]    [c.208]    [c.113]    [c.123]    [c.124]    [c.82]    [c.395]    [c.396]    [c.418]    [c.281]    [c.585]   
аналитическая химия ртути (1974) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте