Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы ферментативный

    Ферментативный метод. Наиболее старым методом производства этилового спирта является ферментативный метод. Сущность его заключается в сбраживании крахмало- или сахаросодержащих пищевых продуктов (картофель, зерно, меласса и др.) с помощью бактерий, которые в процессе своей жизнедеятельности перерабатывают углеводы в этиловый спирт и углекислоту. [c.26]


    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Более впечатляющий пример — возможность превращения производных, получаемых из жидкого горючего (нефти), в пищевые углеводы. Для такого превращения необходимо промышленным способом расщепить нефтепродукты до глицеральдегида. Затем глицеральдегид можно ферментативным путем превратить во фруктозу, глюкозу и крахмал. [c.260]

    Встречающиеся в природе простые сахара не используются для промышленного получения этилового спирта, так как они слишком дороги и количество их слишком мало. В качестве исходных продуктов применяют более дешевые полисахариды [особенно крахмал и, реже, гидролизованную целлюлозу], которые ферментативным путем превращают в более простые, способные сбраживаться углеводы. [c.124]

    Ферментативный гидролиз углеводов (сахаридов, крахмала, древесины)  [c.216]

    Ферментативные процессы (ферментативный катализ) лежат в основе жизнедеятельности всех организмов. В химические функции живых клеток входит разложение и синтез белков, жиров, углеводов и других очень сложных веществ. Благодаря высокой специфичности и активности ферментов за короткое время и при сравнительно низких температурах в живом организме образуются необходимые для жизнедеятельности соединения. [c.112]


    Обязательный органоид клетки вакуоли—полости, наполненные клеточным соком и отделенные от цитоплазмы вакуолярной мембраной. Форма вакуолей изменяется вследствие движения п контракции цитоплазмы. Вакуоль в молодых клетках состоит из множества мелких полостей, в старых — из одной очень большой. Клеточный сок представляет собой водный раствор различных солей, углеводов, белков, жиров и ферментов. В вакуолях сосредоточиваются различные соединения, которые должны подвергаться ферментативным превращениям, образуются продукты жизнедеятельности и отбросы. [c.195]

    Ферментативный анаэробный распад углеводов исследуют при инкубации тканевого гомогената или экстракта с субстратами гликолиза (гликогеном, глюкозой, а также с промежуточными продуктами гликолиза). О процессе судят по приросту конечного продукта анаэробного превращения углеводов — лактата или убыли субстратов. Отдельные этапы изучают при добавлении в инкубационную среду ингибиторов ферментов или удалении диализом кофакторов и коферментов, необходимых для определенных реакций процесса анаэробного превращения углеводов. [c.49]

    Этанол получают путем ферментативного гидролиза углеводов этот способ, несомненно, наиболее старый крупномасштабный органический синтез, известный человечеству с древнейших времен. Для получения этилового спирта человек издавна использовал различные фрукты виноград, инжир, финики. [c.406]

    Образование глино-белковых комплексов ощутимо сказывается на ферментативной устойчивости глинистых суспензий. Отмечено связывание глиной углеводов, в тем числе сахарозы. По Д. Грин-ленду, она образует с монтмориллонитом комплексы, содержащие один-два слоя молекул в межпакетном промежутке. Аналогично ведут себя производные полисахаридов (целлюлоза, гемицеллюлоза, пектин и др.) [47]. [c.74]

    БРОЖЕНИЕ, ферментативное расщепление органических веществ, преимущественно углеводов. Может осуществляться в организме животных, растений и мн. микроорганизмов без участия или с участием О2 (соотв. анаэробное или аэробное Б.). [c.316]

    Большое значение в разнообразных процессах обмена в-в имеет ферментативное Д. Существует два типа подобных р-ций простое Д. (обратимая р-ция) и окислительное Д., в к-ром происходит сначала Д., а затем дегидрирование субстрата. По последнему типу в организме животных и растений осуществляется ферментативное Д. пировиноградной и а-кетоглутаровой к-т-промежуточных продуктов распада углеводов, жиров и белков (см. Трикарбоновых кислот цикл). Широко распространено также ферментативное Д. аминокислот у бактерий и животных. [c.19]

    В процессе роста биомассы в дрожжевой клетке происходит ферментативный синтез белка, липидов, углеводов, витаминов Состав товарных Д к определяется видом сырья, используемого для приготовления питат сред (см табл) [c.120]

    При биохим. очистке отработанных р-ров ПАВ окисление ведется в присут. ферментов. С увеличением т-ры скорость окисления увеличивается, но вьпие 35 °С ферменты разрушаются. Анионактивные ПАВ адсорбируются на межфазных пов-стях раздела, вследствие чего снижается ферментативный гидролиз жиров, белков и углеводов, приводящий к угнетению жизнедеятельности бактерий. [c.589]

    Первое исследование Ф. к. как хим. процесса было выполнено К. Кирхгофом, к-рый в 1814 продемонстрировал ферментативную конверсию крахмала в растворимые углеводы. [c.80]

    В третьей части книги (гл. 6—8) обсуждаются общие свойства ферментов, вопросы кинетики химических реакций и различные механизмы ферментативного катализа. В гл. 6 достаточно подробно изложены основы ферментативной кинетики, а также рассмотрены механизмы регуляции ферментативных реакций в клетках. В гл. 7 дана рациональная система классификации ферментативных реакций, включающая сведения о различных ферментах и методике их исследования. Гл. 8 посвящена химическим свойствам и специфической роли коферментов, причем эти свойства рассматриваются в связи с типами реакций, описанными в предыдущих главах. В этих главах много справочного материала, и их можно не читать целиком. Для студентов и преподавателей будет совсем нетрудно разобраться в изложенном здесь материале и применять его. При желании эту часть книги можно легко объединить с материалом гл. 2, где обсуждаются свойства белков, углеводов, нуклеиновых кислот и липидов. [c.8]

    Сушка солода обеспечивает снижение его влажности с 40...50 до 3...6 % и придание солоду специфического вкуса, цвета и аромата при сохранении высокой ферментативной активности. Ферментативный гидролиз сложных углеводов и белков при сушке солода проявляется сильнее, чем при солодоращении, так как оптимальные температуры, повышающие ферментативную активность, находятся в пределах [c.76]

    Хотя основным топливом для организма служат углеводы, ферментативное окисление жирных кислот также является существенным источником энергии. Некоторые детали процесса окисления насыщенных кислот, каждая отдельная стадия которого катализируется соответствующим ферментом, представлены на рис. 14.4. Начальная стадия процесса, в котором кислота участвует в активированной форме — в виде производного кофермента А, — а,р-д егидрирование. Последующие стадии — гидратации и затем окисления — приводят к р-кетонокисло-те, поэтому весь процесс в целом рассматривается как р-окисление. [c.472]


    ФОТОСИНТЕЗ — синтез растениями органических веществ (углеводов, белков, жиров) из диоксида углерода, воды, азота, ( юсфора, минеральных солей и других компонентов с помощью солнечной энергии, поглощаемой пигментом хлорофиллом. Ф.— основной процесс образования органических веществ на Земле, определяющий круговорот углерода, кислорода и других элементов, а также основной механизм трансформации солнечной энергии на нашей планете. В процессе Ф, растения усваивают вгод4 101 туглерода, разлагают 1,2 х X 10 т воды, выделяют 1 10 т кислорода и запасают 4-102° кал солнечной энергии в виде химической энергии продуктов Ф. Это количество энергии намного превышает годовую потребность человечества в ней. Ф.—сложный окис-лительно-восстановительный процесс, сочетающий фотохимические реакции с ферментативными. Вследствие Ф. происходит окисление воды с выделением молекулярного кислорода и восстановление диоксида углерода, что выражается [c.268]

    Гликоген.— Гликоген представляет собой резервный углевод животных организмов в частности, он содержится в печени и мышцах. Гликоген с иодом дает окраску от коричневой до фиолетовой и в этом отношении похож на предельный декстрин. Гликоген построен исключительно из остатков D-глюкозы, связанных друг с дру гом так же, как в мальтозе, — продукте ферментативного гидролиза полисахарида из определения концевых групп следует, что один концевой остаток приходится на 12—18 глюкозных единиц. Гликоген очень близок к амнлопектину, так как метилированный гликоген дает [c.567]

    Цитоплазма имеет гетерогенную структуру и вязкую консистенцию. Коллоидный характер ее обусловлен белковыми веществами. Кроме них цитоплазма содержит рибозонуклеопротеиды, липоиды, углеводы и значительное количество воды. Цитоплазма молодых клеток внешне гомогенна, при старении клеток в ней появляются вакуоли, равномерная зернистость, жировые и липоидные гранулы. В цитоплазме с ее органоидами (хондриосомами, микросомами, вакуолями) и включениями протекают важнейшие ферментативные процессы. [c.194]

    Для очистки стоков по второму варианту (с высокой концентрацией органических веществ) применяют анаэробное разложение нх, состоящее из двух основных стадий 1) ферментативный гидролиз углеводов, белков и жиров, содержащихся в сточных водах 2) превращение образовавшихся продуктов гидролиза органических соединений в углекислый газ и метан. На второй стадии анаэробной очистки сточных вод могут образовываться минеральные соли и гумусоподобные вещества. [c.408]

    БРОЖЕНИЕ, анаэробный ферментативный окисл.-восстановит. процесс П[)евра1цсния орг. в-в, благодаря к-рому Организмы получают энергию, нeoбxoДII yю для хсизнсдея-тельности. Может осуществляться у животных, растений и мн. микроорганизмов. Нек-рые бактерии, микроскопич. грибы и простейщие растут, исгюль )уя только ту энергию, к-рая освобождается при Б. Исходные субстраты н Б.— гл. обр. углеводы, орг. к-тьг, пуриновые и пиримидиновые основания. В зависимости от сбраживаемого субстрата и путей его метаболизма в результате Б. могут образовываться спирты (этанол и др.), карбоновые к-тьг (молочная, масляная и др.), ацетон и другие орг. соед., СО2, а в ряде случаев — Нг. В соответствии с осн. продуктами, образующимися при Б., различают спиртовое, молочнокислое, маслянокислое и др. виды Б, [c.82]

    Перегруппировка открыта К. Фрисом в 1908. ФРУКТОЗА (плодовый, нли фруктовый, сахар левулоза), моносахарид сладкого вкуса (слаще сахарозы в 1,5 раза). В природе распростр. В-Ф. для ее (3-аномера (ф-ла I) illл 102—104 °С, 1а]п —132°, равновесное [а]п —93°. Содержится в спелых фруктах, меде структурный фрагмент олигоса-харидов (напр., сахарозы и раффинозы), полисахаридов (напр., инулина). Фосфаты Ф. — промежут. соед. в энергетич. обмене углеводов. Получ. мягким кислотным или ферментативным гидролизом сахарозы или фрук-танов. Усиаивается больными диабетом лучше, чем глюкоза. [c.635]

    Огромные успехи исследований механизмов кодирования наследственной информации и биосинтеза белка, ферментативного катализа и регулирования активности ферментов, действия антибиотиков и гормонов, всей той области изучения живого, которую принято называть молекулярной биологией, приучили всех к мысли о том, что в структурах молекул жизни положение буквально каждого атома строго обусловлено и подчинено выполнению предназначенных для этих молекул биологических функций. Именно в атом смысле принято обычно говорить о специфичности биополимеров, прочно ассоциировавшейся в сознании исследователей с однозначным соответствием между структурой и выполняемой функцией. При таком комплексе стр>т<турного детерминизма трудно было освоиться с представлением о специфичности полисахаридов, для многих из которых характерна статистичность структур, микрогетерогенность и, нередко, хаотичность распределения различных моносахаридных остатков по цепи. И, тем не менее, накапливающийся материал по сложному и высоко специализированному функционированию углевод ных полимеров в живых системах убеждает в том, что и в этой области возможен и необходим перевод функций- нальных свойств биополимеров на язык молекулярных структур, т. е. применим основной принцип молекулярной) [c.162]

    Ряд реагентов из растительных отходов был разработан А. К. Мискарли с сотрудниками [76]. К их числу относятся реагент из стеблей и коробочек хлопчатника, стеблей табака, экстракты из гранатных и виноградных выжимок. Эти реагенты также содержат значительные количества гемицеллюлоз, щелочерастворимые фракции лигнина, пентозаны, в некотором количестве опорные углеводы типа пектина, дубильные вещества и смолы. Защитные свойства их невысоки. По способности снижать водоотдачу они могут быть расположены в ряд УЩР > экстракт хлопчатника >гранатовый экстракт >> экстракт табака. Для соленых сред эти реагенты также непригодны. В связи с их ферментативной неустойчивостью (особенно реагентов из виноградных и гранатных выжимок), они требуют введения бактерицидов. [c.189]

    ИСКУССТВЕННАЯ ПИЩА, пищ. продукты, к-рые олуча -ют из разл. пищ. в-в (белков, аминокислот, липидов, углеводов), предварительно выделенных из прир. сырья или полученных направленны.м синтезом из минер, сырья, с добавлением пищевых добавок, а также витаминов, минер, к-т, микроэлементов и т. д. В качестве прир. сырья используют вторичное сырье мясной и молочной пром-сти, семена зерновых, зернобобовых и масличных культур и продукты их переработки, зеленую массу растений, гидро-бионты, биомассу микроорганизмов и низших растений прн этом выделяют высокомол. в-ва (белки, полисахариды) и иизкомолекулярные (липиды, сахара, аминокислоты и др ) Низкомол. пищ. в-ва м. б. получены также микробиол. синтезом из глюкозы, сахарозы, уксусной к-ты, метанола, углеводородов, ферментативным синтезом из предшественников и орг. синтезом (вкл очая асимметрич. синтез для оптически активных соед ). Высокомол. в-ва должны обладать определенными функциональными св-вамн, такими, как р-римость, набухание, вязкость, поверхностная активность, способность к прядению (образованию волокон) и гелеобразованию, а также необходимым составом и способностью перевариваться в желудочно-кишечном тракте. Низкомол. в-ва химически индивидуальны или являются смесями в-в одного класса в чистом состоянии их св-ва не зависят от метода получения. [c.273]

    Исключительное значение имеет К. а. в биохимии и биофизике. Хим. и биол. св-ва биополимеров (белков, углеводов, нуклеиновых к-т и т. д.) в большой степени зависят от их конформац. св-в. Так, при сильном изменении нативной конформации белков (денатурашш) они полностью теряют свою биол. активность. Конформац. изменения являются обязательной составной частью практически всех биохим. процессов. Напр., в ферментативных р-циях опознавание субстрата ферментом, характер взаимод. и структура образующихся продуктов определяются пространств, строением и возможностями взаимной подстройки (в т. ч. конформационной) участвующих молекул. Часто связывание фермента с субстратом вызывает в последнем такие конформац. изменения, к-рые и делают возможным его дальнейшее строго регио- и стереоспецифичное реагирование. [c.461]

    Определение общей осахарнвающей активности (ОСп). Метод основан на определении скорости ферментативной реакции гидролиза крахмала, которую устанавливают по изменению угла вращения плоскости поляризации субстрата. Это изменение происходит в результате ферментативного гидролиза крахмала до низкомолекулярных углеводов. [c.300]

    И мотут применяться как для гидролитического распада гликозидов, так и для их синтеза. Для этого углевод вместе с соответствующим гидроксилсодержащим соединением подвергают воздействию фермента. Важным преимуществом ферментативного синтеза является его строгая, стереоспецифичность. Так, например, эмульсин — фермепт горького миндаля — дает всегда -гликозиды, дрожжевая гликозидаза — только а-гликозиды. Ферментативный метод позволяет весьма просто рещить очень сложный в препаративном отнощении вопрос о стереохимической направленности реакции образования гликозидов. Недостатком ферментативного метода является высокая термолабильность ферментов, чем вызывается необходимость проведения работы в строго определенных, условиях. [c.88]

    На рис. 11-3 некоторые бнолотнчески активные соединения расположены по мере возрастания степени окисленности углерода. Видно, что больщинство биологически важных промежуточных соединений отли-чается по степени окисленности от углеводов всего лищь на 2 электрона, причем ло мере удлинения цепи это различие (Имеет даже тенденцию К уменьщению. Исключительно трудно перемещаться при помощи ферментативных процессов между соединениям , содержащими 2, 3 и 4 атома углерода (т. е. в вертикальном направлении на рис. 11-3), если только они не находятся на уровне окисленности углеводов или соединений, расположенных правее, на несколько более высоком уровне окисленности. В то же время часто бывает возможно перемещаться по горизонтали, с легкостью используя окислительно-восстановительные реакции. Например, жирные кислоты собираются лз ацетатных единиц, которые расположены на том же окислительном уровне, что л углеводы, и после сборки восстанавливаются. [c.473]


Смотреть страницы где упоминается термин Углеводы ферментативный: [c.233]    [c.541]    [c.984]    [c.250]    [c.247]    [c.676]    [c.48]    [c.201]    [c.406]    [c.178]    [c.291]    [c.321]    [c.375]    [c.311]    [c.112]    [c.735]    [c.3]    [c.236]   
Биоорганическая химия (1987) -- [ c.465 , c.466 , c.468 , c.475 ]




ПОИСК







© 2025 chem21.info Реклама на сайте