Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликозиды реакции образования

    В основе большинства важнейших цветных реакций на углеводы лежит, вероятно, реакция образования фурфурола (в присутствии кислых реагентов), оксиметилфурфурола и родственных соединений, которые конденсируются с фенолами или ароматическими аминами, образуя окрашенные продукты. Различные модификации этой основной реакции позволяют различать, с одной стороны, альдозы и кетозы, с другой стороны, пентозы и гексозы. Кроме того, некоторые специфические реакции позволяют определять остатки 2-дезоксисахаров в таких природных продуктах, как нуклеотиды и сердечные гликозиды. Некоторые общие реагенты (например, реактив Фелинга, трифенилтетразолийхлорид) и специфические реагенты (например, реактив Берфеда, кислый молиб-дат) позволяют различать восстанавливающие и невосстанавливающие сахара. Многие классические реакции послужили основой для разработки проявителей для бумажных хроматограмм (см. Блок [315]). Цветные реакции на различные углеводы приведены в табл. 1.3. [c.66]


    Кислоты гидролизуют ацетали и кетали, но не простые эфиры. Поэтому при помощи ряда простых реакций можно установить расположение карбонильной группы в данном углеводе и выяснить, какая именно гидроксильная группа принимала участие в образовании полуацеталя. Вот эти реакции 1) метилирование, катализируемое кислотами, 2) этерификация по Вильямсону и 3) гидролиз гликозида. В случае глюкозы образуется 2, 3, 4,6-тетра-О- [c.441]

    Моносахариды как многоатомные спирты вступают в реакцию образования простых и сложных эфиров. Например, D-глюкоза при действии диметилсульфата превращается в полностью метилированный продукт, который является одновременно гликозидом и простым эфиром  [c.220]

    Одной из характерных химических реакций моносахаридов является их взаимодействие с алкилирующими агентами, приводящее к образованию соединений типа простых эфиров. Особенно легко реагирует гликозидный гидроксил. При простом нагревании со спиртами в присутствии кислотных катализаторов образуются построенные по эфирному типу гликозиды. Роль спиртового компонента в этой реакции может взять на себя и вторая молекула моносахарида. В результате такой реакции из двух молекул моносахарида с потерей воды образуется молекула дисахарида  [c.299]

    В соответствии с общими закономерностями реакций нуклеофильного замещения, в случае реализации мо-номолекулярного механизма (3 1) ожидается образование продукта реакции в виде смеси диастереомеров (т.е. а-и (3-форм), так как карбкатионный фрагмент переходного состояния молекулы плоский если же процесс пойдет по синхронному бимолекулярному пути (8 2) — пространственная структура продукта будет зависеть от конфигурации исходного моносахарида из а-формы образуется р-гликозид, из р-формы — а-гликозид, так как атака нуклеофила осуществляется в тыл связи С-0 и завершается обращением конфигурации реакционного центра. Поскольку моносахарид всегда будет существовать в растворе в виде таутомерной смеси а- и р-форм (не считая ациклической структуры), то независимо от механизма реакции мы, как правило, получим гликозид в виде изомерной смеси. Только лишь их соотношение будет варьироваться в зависимости от условий реакций и природы реагента. Но это все верно тогда, когда [c.53]

    В частности, в растительном организме в зависимости от его потребностей реакция под действием одного и того же фермента сдвигается в ту или другую сторону. Указанные ферменты локализованы в--определенных морфологических образованиях растений. Нарушение-или разрушение этих клеток ведет к нарушению синтеза и распада гликозидов, чем нарушается нормальный обмен углеводов в растениях. [c.95]


    Напишите уравнение реакции образования гликозида из метилового спирта и фруктозы. [c.111]

    Ж-9. 1. Напишите уравнение реакции образования гликозида из галактозы и метилового спирта. [c.73]

    До недавнего" времени реакция образования гликозидов рассматривалась как замещение атома водорода в полуацетальном гидроксиле циклической формы сахара — пиранозы или фуранозы — на радикал спирта, например  [c.124]

    Для всех гликозидов характерно отсутствие таутомерных превращений в растворе, т.е. переход их в ациклическую форму невозможен, так как для этого процесса требуется подвижный атом водорода полуацетального гидроксила для преобразования последней в карбонильную группу. Второе общее свойство гликозидов — это достаточно легкая способность их к гидролизу в кислой среде, фактически являющемуся процессом, обратным реакции их образования. [c.54]

    Напомним, что равновесие в реакциях синтеза биополимера из мономеров (будь то амиды, эфиры, фосфодиэфиры или гликозиды) обычно сдвинуто в сторону расщепления, а не образования полимера. Положение равновесия зависит от конкретных структур. Некоторые связи при достаточно высоких концентрациях мономеров образуются легко,, другие практически никогда не образуются в сколько-нибудь заметном количестве. Соответственно и гидролиз в равновесии может быть лишь частичным, а может достигать 99,9%. [c.217]

    Оба эти кофермента являются фос-форилированными Ы-гликозидами рибозы, образованными реакцией неподеленной пары гетероциклического атома азота (нуклеофильного центра) по электрофильному С -атому D-pибo-фуранозы. Структура этого гликозида интересна тем, что атом азота становится аммонийным, а пиридиновый цикл — сильно электрофильным. [c.283]

    И мотут применяться как для гидролитического распада гликозидов, так и для их синтеза. Для этого углевод вместе с соответствующим гидроксилсодержащим соединением подвергают воздействию фермента. Важным преимуществом ферментативного синтеза является его строгая, стереоспецифичность. Так, например, эмульсин — фермепт горького миндаля — дает всегда -гликозиды, дрожжевая гликозидаза — только а-гликозиды. Ферментативный метод позволяет весьма просто рещить очень сложный в препаративном отнощении вопрос о стереохимической направленности реакции образования гликозидов. Недостатком ферментативного метода является высокая термолабильность ферментов, чем вызывается необходимость проведения работы в строго определенных, условиях. [c.88]

    Примером биохимического гликозилирования может служить рассмотренная ранее (см. стр. ЗЬ9) реакция образования глюкуронидов из УДФ-глюкуроновой кислоты. Вполне аналогично протекает синтез фенольных гликозидов в растениях, например, при образовании арбутина LXXXVH из УДФ-ГЛЮК03Ы1  [c.397]

    Так, в главе 8 речь идет об основных ферментативных реакциях образования фенолов через уксусную и шикимовую кислоты, показаны общие схемы биосинтеза различных фенолов, флавонидов, кумаринов и др. Более основательно рассмотрены пути биосинтеза лигина и таннина (глава 9). Анализ некоторых ферментативных систем и отдельных ферментов биосинтеза фенольных соединений проведен в главе 10. Здесь рассмотрены ферменты гидрокси-лирования, метилирования, образования и гидролиза гликозидов, окисления и т. д. Подробно описаны ферменты биосинтеза фенилаланина и тирозина и аналогичных им соединений. Вопросам влияния различных факторов (свет, температура, питание) на процессы биосинтеза фенолов, изложению физиологических аспектов биосинтетических процессов посвящена глава 11. Следует указать, что проблемы биогенеза природных соединений, в том числе фенолов, подробно рассмотрены в недавно вышедшем сборнике [12]. Здесь же можно упомянуть и книгу Уоллена, Стодолы и Джексона [13], содержащую богатый справочный материал по различным типам ферментативных превращений органических соединений, и в частности фенолов. [c.7]

    Роль оксинитрилаз в природе не ясна. Поскольку эти ферменты встречаются в растениях, которые содержат цианогеновые гликозиды, можно предположить, что их функция состоит в проведении реакции образования циангидрина из H N и альдегида, что приводит в итоге к образованию агликона гликозида. Недавно проведенные исследования (Коукол и сотр. [37]) показывают, однако, что конденсация H N с п-оксибензальдегидом не может быть промежуточной стадией при образовании цианогенного глюкозида сорго. [c.335]

    Образование ортоэфира происходит вследствие взаимодействия ацетила у С-2 с С-1 при отщеплении от последнего аниона галогена образующийся ацетоксониевый ион LIII реагирует с анионом спирта, давая 2 стереоизомер ных ортоэфира (реакция а). Эфир сольватирует карбониевый ион LIII и, препятствуя присоединению к нему аниона спирта, способствует действию этого аниона на С-1 с образованием гликозида (реакция б). Существует ряд модификаций метода Кенигса и Кнорра, например, конденсация галогенозы не с фенолом, а с фенолятом и др. [c.146]

    Образование оксониевых соединений часто встречается в химии кислородсодержащих органических соединений, будучи промежуточным процессом многих реакций (кислотный гидролиз сложных эфиров, гликозидов и т. п.). Из ди-фенилового эфира методом диазораспада был получен химически крайне инертный борфторид трифенилоксония  [c.37]


    Реакции полуацетального гидроксила. Реакции образования ацеталей моносахаридов в циклической форме имеет исключительно важное значение в природе вообще и в процессах жизнедеятельности в частности. Этот процесс образования гликозидов, т. е. производных моносахаридов за счет гликозидного гидроксила. Названия гликозидов строятся исходя из того, какой моносахарид образовал ацеталь (гликозид) и окончание оза заменено на озид . Например, ацеталь глюкозы называется глюкозид, фруктозы — фруктозид, рибозы — рибозид и т. д. Радикал, с которым образован простой эфир гликозидного гидроксила (несахарная часть гликозида), называется агликоном. [c.332]

    Реакции образования ацеталей моносахаридов со спиртами используются для алкилирования, т. е. получения алкилгликозидов, которые в принципе ничем не отличаются от процесса образования ацеталей из обычных полуацеталей (см. стр. 200). Эта реакция проводится при нагревании в присутствии сухого хлористого водорода. Примером такой реакции может служить получение гликозида из глюкозы и [c.332]

    Сходство начинается и кончается структурным подобием гликозильного остатка и одной из циклических форм свободного моносахарида, не распространяясь ни иа важнейшие свойства гликозидов, ни на пути их получения. Во-первых, гликозиды устойчивы и отнюдь ие подвергаются самопроизвольным взаимопревраш ениям это истинные изомеры, четыре различных устойчивых вещества. Во-вторых, при образовании гликозидов из моносахаридов одна из циклических форм моносахарида совсем не приводит автоматически к образованию гликозида со структурно подобным гликозильным остатком. Наоборот, как правило, это не происходит. Ниже мы подробнее разберем сложный и ван<ный вопрос о путях синтеза гликозидов. В-третьих, характерные реакции моносахаридов, связанные с наличием в них карбонильной группы (типа образования серебряного зеркала), полностью отсутствуют у гликозидов. [c.21]

    При использовании эквимолярных количеств цианида и бромида ртути в ацетонитриле в некоторых случаях продуктом реакции являются а-о-гликозиды [7]. Образование а-о- и а-ь-гликозидов вместо ожидаемых р-изомеров иногда наблюдалось и при проведении конденсации в питрометане в присутствии цианида ртути [8—10]. Таким образом, с уверенностью предсказать стерическое направление реакции в настоящее время не представляется возможным. Не предложен пока и механизм реакции, позволивщий бы объяснить столь противоречивые результаты. [c.358]

    Позднее Бредиг показал, что при асимметрическом синтезе нитрила миндальной кислоты ио Розенталеру эмульсин можно заменить такими алкалоидами, как хинин или хинидин. Применение хинина приводит к образованию гликозида нитрила /-миндальной кислоты, применение хинидина — к образованию d-формы. В этом случае также приходится предположить, что асимметрическое течение реакции обусловлено промежуточным образованием продукта присоединения оптически деятельного хинина и H N или бензальдегида. Возможность использования хинина или хинидина вместо эмульсина имеет большое теоретическое значение, так как она показывает, что фермент, химическая природа которого не установлена, может быть с успехом заменен сравнительно просто построенными алкалоидами. [c.672]

    Циклические формы углеводов называются еще полуацетальными. Все углеводы, имеющие в одной из таутомерных форм альдегидную группу, легко окисляются [АвзО, СиСОН) ] и потому часто используются в качестве восстановителей. Одна из важнейших реакций моносахаридов — образование гликозидов в результате взаимодействия полу-ацетального или гликозидного гидроксила (в формулах подчеркнут) с оксипроизводными (спиртами, фенолами) и первичнь1ми или вторичными аминами с выделением воды, например  [c.79]

    Пожалуй, наиболее важной чертой гликозидной связи с точки зрения синтетика или, по крайней мере, чертой,, доставляющей ему наибольшее количество хлопот, является изомерия гликозильного остатка. Как мы помним, типичный моносахарид может образовывать четыре изомерных гликозильных остатка и, следовательно,, четыре типа гликозидной связи а- и р-аномеры пиранозной формы и а- и р-аномеры фуранозной формы. Поэтому прп синтезе опреде.ттенного гликозида из данного моносахарида и данного спирта необходимо добиться не только создания нужной — гликозидной — связи (это общая задача любого синтеза), но и обеспечить образование гликозильного остатка с определенным размером цикла, а также обеспечить определенную конфигурацию гликозидного центра, т. е. добиться стереоспецифичности или хотя бы стереоселективности реакции. [c.130]

    Особые свойства одной из гидроксильных групп. Последнее серьезное противоречие оксикарбонильным формулам Фишера состояло в том, что одна из гидроксильных групп моносахаридов резко отличалась по своим свойствам от других гидроксилов. Так, например, при действии на моносахариды спирта в присутствии следов кислот легко образуются моно-О-алкильные производные, так называемые гликовиды, причем эта реакция обратима, и гликозиды в кислой среде сравнительно легко распадаются с регенерацией исходного моносахарида для каждого из 16 моносахаридов было получено по два таких производных. Такое обратимое образование О-алкильных производных скорее напоминает поведение гидроксильной группы полуацеталей и совершенно не характерно для спиртовых гидроксилов, какими являлись, если принять формулы Фишера, все гидро.ксильные группы в молекуле моносахаридов. [c.31]

    Весьма важным является вопрос о стереохимическом ходе реакции Кенигса—Кнорра. Как указывалось ранее при рассмотрении реакционной способности ацилгликозилгалогенидов (ст. 71), решающим для стереохимического итога реакции является влияние конфигурации у атома С(2), соседнего с гликозидным углеродным атомом. Если учесть все сказанное ранее, то становится ясным, что при синтезе Кенигса-Кнорра обычно получаются лишь гликозиды с транс-конфигура-цией у С(1)— С(2) -атомов. Действительно, если исходным веществом служил ацил-галогенид с цис-расположением у С(1)— С(2), то гликозидация идет без участия ацетоксигруппы у С(2), сопровождается обращением конфигурации у С(1) и дает гликозид с транс-конфигурацией у С(1) — С(2>. Если атом галоида в ацилгалогениде находится в транс-положении к ацетоксигруппе у С(2), последняя принимает участие в реакции, которая проходит через циклический карбониевый ион, сопровождается двойным обращением у Ql) и приводит также к гликозиду с транс-конфигурацией у С(1) — С(2). Кроме того, в этом случае возможно также образование и орто-эфира. Данные о том, что проведение реакции в присутствии ртутных солей дает гликозиды с цис-конфигурацией у С(1,—С(2), если и справедливы, то, вероятно, только для очень ограниченного числа частных случаев. [c.86]

    Интересны такие недостаточно удобные с препаративной точки зрения методы получения гликозидов, как синтез их из тиоадеталей моносахаридов при обработке их спиртами в присутствии солей ртути. Эту реакцию можно направить по желанию как в сторону образования пиранозида, так и в сторону образования фуранозида, и в этом ее особый интерес. Нагревание со спиртом. в присутствии сулемы дает пиранозид однако, если к реакционной смеси добавить окись ртути, то в этом случае образуется фуранозид, например  [c.87]

    Процесс гидролитической деструкции полисахаридов состоит из множества реакций гидролиза гликозидньк связей - обменных реакций между гликозидом и водой, протекающих по механизму нуклеофильного замещения SnI. Этот механизм - последовательность стадий, обратная процессу образования ацеталей из альдегидов и спиртов. При гидролизе гликозидной связи как ацеталя алкокснльная группа является плохо уходящей группой, что и вызывает необходимость ее предварительного протонирования с переводом в сопряженную кислоту. Легкость гидролиза гликозидной связи разбавленными кислотами в отличие от гидролиза простой эфирной связи обусловлена [c.287]

    Внутримолекулярный общий кислотный катализ удобно проиллюстрировать на примере гидролиза ацеталей (II), образованных из салициловой кислоты и альдегидов, в качестве которых могут выступать простые соединения типа формальдегида и бензальдегида или альдегидные формы углеводов. Реакции последних (12) представляют особый интерес в связи с изучением механизма действия ферментов, гидролизующих гликозиды [24, 32] (см. разд. 24.1.4.4). [c.468]

    Хотя альдозы более устойчивы к действию кислот, чем к действию щелочей, однако в кислой среде они подвергаются дегидратации, степень которой зависит от условий. Упаривание растворов альдоз в разбавленных минеральных кислотах (10" —10" М) вызывает реакции межмолекулярной конденсации, сходные с образованием гликозидов (см. разд. 26.1.8.1) и называемые реверсией , которые приводят к небольшим количествам ди-, три- и высших олигосахаридов. Гексозы и высшие сахара, у которых разница энергий между двумя конформациями кресла невелика, легко подвергаются внутримолекулярной дегидратации до 1,6-ангидро-р-пираноз. Реакция протекает под термодинамическим контролем и количество получающегося ангидрида зависит от стабильности альдозы в С4-конформации (см. разд. 26.1.8.2). В более жестких условиях альдозы и кетозы подвергаются более глубокому распаду с образованием производных фурана (схема 29) [85]. В случае гексоз и гексулоз продуктом реакции является 5-гндроксиме-тнлфурфурол (92), который в более жестких условиях путем раскрытия фуранового цикла превращается в левулиновую (93) и муравьиную кислоты. На превращении в тщательно контролируемых условиях в производные фурфурола и последующем взаимодействии с различными фенолами и ароматическими аминами основано колориметрическое определение углеводов. В некоторых случаях с помощью этой реакции можно дифференцировать различные типы сахаров [86]. [c.158]

    Тонкие детали механизма реакции выяснены не до конца, не ясна структура переходного состояния (схема 30). Наиболее вероятными переходными состояниями являются циклические оксо-ниевые ионы (95) и (97), так как надежно установлено, что они являются промежуточными частицами при гидролизе гликозидов [89]. По-видимому, фуранозы способны образовывать оксониевый ион (95) легче, чем пиранозы. Если бы реакция включала образование ациклического полуацеталя (96) или ациклического оксо-ниевого иона (98), следовало бы ожидать преимущественного образования пятичленного цикла, что энергетически более выгодно, чем образование шестичленного цикла [89]. Расширение цикла до шестичленного должно протекать путем образования ациклических оксониевых ионов типа (98) однако надежно установлено, что аномеризация метилпиранозидов в подкисленном СОзОН протекает через циклический оксониевый ион (97), так как агликон в первоначально образующихся продуктах реакции возникает из растворителя. [c.160]


Смотреть страницы где упоминается термин Гликозиды реакции образования: [c.255]    [c.395]    [c.349]    [c.66]    [c.267]    [c.236]    [c.202]    [c.20]    [c.54]    [c.59]    [c.62]    [c.288]    [c.203]    [c.209]    [c.242]    [c.457]    [c.84]    [c.159]   
Химия и биохимия углеводов (1977) -- [ c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Гликозиды

Гликозиды гликозиды

Гликозиды образование



© 2024 chem21.info Реклама на сайте