Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт III определение аскорбиновой кислотой

    Ход определения. Раствор, содержащий 8—36 мг циркония, приводят к pH 2—2,2 и разбавляют 0,01 н. раствором соляной кислоты до 50 мл. Прибавляют 2 капли индикатора и титруют при энергичном перемешивании 0,05 М раствором комплексона до перехода первоначальной пурпурно-розовой окраски в оранжево-красную. Переход окраски очень четкий даже при искусственном освещении. Приведенным способом можно определять цирконий в присутствии церия, лантана и урана. Определению циркония не мешают ртуть, свинец, никель, кобальт и ванадаты. Остальные катионы, согласно ориентировочным опытам автора, мешают. Также ведут себя анионы с комплексообразующими свойствами, затем сульфаты, вольфраматы, молибдаты. Трехвалентное железо перед титрованием циркония можно восстановить аскорбиновой кислотой. Но и в этом случае, если отношение Ре Zг превышает 2 1, проявится мешающее влияние двухвалентного железа (исчезнет окраска индикатора). [c.373]


    Вольфрам, алюминий, кобальт никель, тантал, ниобий не мешают определению. Влияние железа(1П) (до 10 мг) устраняют введением аскорбиновой кислоты [c.153]

    Марганец, хром, никель, кобальт не мешают определению в соотношении 10 1, алюминий 40 1, титан 50 1 медь и железо мешают. Влияние меди и железа устраняют добавлением тиомочевины и аскорбиновой кислоты. Предельно допустимая концентрация окиси цинка в воздухе 0,5 мг/м . [c.312]

    В литературе описаны и другие методы анализа цианкобаламина, в частности спектрофотометрический [604 — 607], полярографический [608], определение содержания кобальта [609 - 611]. Известно также, что каждый грамм-моль цианкобаламина дает 1 г-моль цианида [612, 613), поэтому цианид-селективный электрод можно использовать для анализа цианкобаламина [602]. H N можно количественно выделить из цианкобаламина а) восстановлением аскорбиновой кислотой, раствором хлорида олова(П) в соляной кислоте или гипофосфитом [c.201]

    Не мешают определению титана магний, алюминий, цинк, кадмий, марганец, медь, цирконий, церий, р.з.э. кобальт, ванадий (17), железо (П), молибден (У). Никель, хром (Ш) мешают только собственной окраской. Железо (Ш), ванадий (У), молибден (У1)- образуют с реактивом окрашенные соединения, их мешающее действие устра-няется восстановлением аскорбиновой кислотой. [c.23]

    Цинк, марганец, кобальт, железо (II) и другие элементы не мешают определению титана с диантипирилметаном. Мешающее влияние Fe устраняют восстановлением его до Fe аскорбиновой кислотой. Аскорбиновая кислота взаимодействует с солями ТИ+ с образованием комплексных соединений, окрашенных в желтый цвет. [c.68]

    Фотометрическому определению кобальта роданидным методом мешает железо(1П), образующее с S N интенсивно окрашенные комплексы. Большие его количества необходимо отделять [например, экстракцией или осаждением Zn(0H)2], а малые — маскировать с помощью фторидов, фосфатов, пирофосфатов или восстанавливать до Fe(II) аскорбиновой кислотой или хлоридом олова(П). [c.212]

    Нитрозо-К-соль является подходящим реагентом для определения кобальта в некоторых образцах Для определения кобальта в солях никеля был применен роданид с проведением анализа в среде ацетона помехи, связанные с присутствием небольших количеств меди и железа, можно устранить, добавляя мочевину и аскорбиновую кислоту [c.386]

    Значительно реЖе Для определения примесей в нефти исполь зуется радиохимический вариант нейтронно-активационного анализа [4, 25, 395—398]. Патек и Билдстейн [395] предлагают радиохимическую методику, включающую обычное сухое озоление нефти, растворение сухого остатка в 8 н. соляной кислоте, экстракцию из 8 н. НС1 изопропиловым эфиром железа и сурьмы, осаждение селена аскорбиновой кислотой, из среды 0,1 н. азотной кислоты осаждение серебра в виде хлорида серебра, измерение хрома в 2 н. соляной кислоте и дальнейшее разделение скандия, кобальта и цинка на смоле Дауэкс 1X8- Химический выход определяемых элементов составлял от 83 до 94%. Схема анализа опробована только на искусственных смесях элементов. [c.115]


    Примечание. Применение аскорбиновой или лимонной кислоты позволяет определить молибден в присутствии вольфрама, ванадия, хрома, никеля и кобальта. Присутствие ионов NOg до 0,15 моль/л также не мешает определению. [c.115]

    ВИЯХ, что и алюминий. Не реагируют щелочные и щелочноземельные металлы, N1, Со, 2п, Сс1, РЬ, (VI), Сг (П1), Сг (VI) и Цинк и кадмий не мешают даже при 100 000-кратном избытке. Никель и кобальт мешают только своей окраской, поэтому определение Б присутствии этих элементов возможно, если их вводить в стандартные растворы. Д о (VI) и Ш (VI) не мешают до соотношения к алюминию 8000 1 и 1000 1 соответственно. Большие количества их уменьшают окраску комплекса алюминия. Влияние Ре (III) устраняется аскорбиновой кислотой, а Си (II) — тиосульфатом. [c.113]

    Определению содержания титана не мешают магний, алюмиий, цинк, кадмий, марганец, РЗЭ, медь, цирконий, церий, кобальт, молибден (V), ванадий (IV). Молибден (VI) образует с реактивом окрашенное соединение и его мешающее влияние устраняют также, как и мешающее влияние железа рП) и ванадия (V), восстановлением аскорбиновой кислотой, гидроксиламином. Никель, хром (III) мешают определению содержания титана собственной окраской. [c.123]

    Индикатор образует с катионами кобальта в кислом растворе соединение красного или красно-фиолетового цвета. При прямом титровании раствором комплексона 1П окраска в точке эквивалентности изменяется из красной в желтую (цвет свободного красителя). Можно также титровать избыток комплексона обратно растворами Ti la, ТЬ(ЫОз)4, В1(ЫОз)з, Zn( 2Ha02)2. Метод был применен [944] для определения кобальта в присутствии больших количеств меди, например при анализе латуней и бронз. Мешающее влияние меди рекомендуется устранять восстановлением ионов двухвалентной меди иодидом калия и аскорбиновой кислотой. [c.123]

    Определение в рудах и металлургическом сырье [916]. Восстанавливают железо аскорбиновой кислотой и маскируют медь тиомочевиной. По первому варианту анализируемый материал (около 2,5 г) обрабатывают смесью НС1 и НЫОз с добавкой небольших количеств ИгРг и полученный раствор выпаривают затем с Н2504. Нерастворимый в воде остаток сплавляют с пиросульфатом калия, сплав растворяют в воде и раствор присоединяют к основному раствору. К аликвотной части анализируемого раствора добавляют раствор гидроокиси аммония, 150 мг аскорбиновой кислоты и I—2 мл насышенного раствора тиомочевины и определяют кобальт ацетонроданидным методом, измеряя оптическую плотность раствора при 625 ммк. При определении до 0,60% Со расхождение между результатами параллельных определений составляет не более 0,01%, [c.179]

    Определение кобальта спектральным методом после обога-ш,ения экстракцией пирролидиндитиокарбаминатов [637]. Авторы рекомендуют проводить обогащение микроэлементов с селективным отделением железа, алюминия, щелочноземельных и щелочных металлов. Анализируемую пробу переводят в растворимое состояние каким-либо известным методом. К 25 мл раствора пробы в 7 N соляной кислоте прибавляют 1 каплю 30%-ного раствора перекиси водорода и взбалтывают с равным объемом метилозобутилкетона 30 сек. Органический слой содержит около 94% железа в виде хлорида, а также хлориды галлия, олова, ванадия, молибдена и др. Его взбалтывают 1 мин. с 25 мл водного раствора аскорбиновой кислоты для восстановления трех- [c.212]

    Хан [744] предложил метод прямого титрования РО/ раствором магнезиальной смеси в присутствии индикатора 1,2,5,8-тет-раоксиантрахинона. Титруют до появления синей окраски. Разработан метод титрования РО/ раствором соли магния в присутствии эриохрома черного [115, 544, 545], фталеинового фиолетового [1135] при pH 10 или лучше хромкислотного синего при pH 9 [1122]. При использовании этих индикаторов кальций маскируют добавкой ЭДТА железо, никель, кобальт, медь и другие ионы также мешают определению, для маскирования их применяют K N. Алюминий связывают триэтаноламином. Кроме того, мешают титрованию окислители, их предварительно восстанавливают аскорбиновой кислотой или гидроксиламином. [c.36]

    Второй метод — титрование индия комплексоном HI оказался весьма удобным благодаря высокой устойчивости комплексоната индия в кислой среде. Таким образом, индий можно титровать почти без предварительного отделения от других элементов. Трейндл применял для этого титрования ртутный капельный электрод и среду с pH 2, охлаждая раствор до 4° С, однако дальнейшие исследования показали, что титровать можно при обычной комнатной температуре. В. М. Владимирова установила, что титрование на ртутном капельном электроде по току восстановления индия лучше всего проводить при —0,7 в (Нас. КЭ) и при pH 1. В этих условиях метод обладает наилучшей избирательностью и индий можно титровать в присутствии очень многих элементов — магния, кальция, стронция, бария, цинка, кадмия, кобальта, марганца, хрома, алюминия. Железо (HI), также образующее весьма прочный комплексонат, надо восстанавливать до железа (II) аскорбиновой кислотой. Медь, свинец, мышьяк восстанавливаются на ртутном электроде при потенциале титрования индия и поэтому могут мешать, если будут присутствовать в относительно больших количествах. Однако при обычном разложении проб и подготовке раствора к анализу мышьяк и свинец удаляются при обработке соляной и серной кислотами, а медь переходит в комплексный аммиакат При осаждении полуторных окислов (вместе с которыми осаждается и индий). Этот метод был затем применен для определения индия в продуктах металлургического производства и в сфалери-товых концентратах с малым содержанием индия. В последнем случае индий приходится отделять экстракцией, при анализе же более богатых индием материалов отделять его обычно не требуется. [c.214]


    За последние годы метод амперометрического титрования с двумя индикаторными электродами нашёл широкое практическое применение, например, для титрования аскорбиновой кислотой церия, железа, урана, кобальта, вольфрама [52], для определения тория при помощи комплексона [53], а также в анализе органических соединений (оксимов, дифенилдиметилпира-зона, гексилрезорцина, сульфодиазона) [54] и др. и имеет ряд преимуществ перед другими электрохимическими методами. Метод позволяет анализировать растворы, содержащие малые количества (10 —10 г л) вещества не требует сложной электроизмерительной аппаратуры непродолжителен во времени посторонние вещества не мешают проведению анализа, если [c.145]

    Двухвалентное железо образует с 1-нитрозо-2-наф-толом в нейтральной или щелочной средах зеленый осадок, экстрагируемый этилацетатом [1083] или смесью этилацетата и бутилацетата [1369]. Трехвалентное железо после восстановления аскорбиновой кислотой экстрагируется в виде нитрозонафтолата изоамиловым спиртом в присутствии тартратов (pH 7,5 0,5) [116]. Комплекс железа поглощает свет при 680 ммк, где аналогичные комплексы кобальта и никеля не мещают определению [116, 117]. [c.165]

    Кроме работ, отмеченных в обзорах [53, с. 321 235, 236, 249], упомянем следующие определение молибдена (VI) в системах Мо —СЮз —бензиловая кислота [250] и Мо — СЮз — миндальная кислота [251], германия(ТУ)—в системе Ое —пирогаллол—V [252], железа (II) в системе Ре — гид-роксиламин [253], хрома (IV) в системе Сг —4-аминоантипи-рин—N 2 [254], ниобия (V) в системе N5 —4-(2-пиридилазо)-резорцин — СЮз [255], мыщьяка в системе Аз—Со —5СМ-— аскорбиновая кислота [256], циркония (IV) в системе — Оз [257], кобальта(II) в системе Со —1,10-фенантролин—КОг 258, 259], железа(III) в системе Ре —оксикислоты—КОг 260], кремния по каталитической волне молибде-нa(VI) ( + С10з ) [261], индия(1П) в системе 1п лиганд—вольфрам (V) [262], лимонной кислоты в системе —СЮз — лимонная кислота [263], перхлорат-ионов в системе Мо —С104 ([264]. [c.109]

    Для определения железа предложена индикаторная реакция окисления аскорбиновой кислоты оксалатом кобальта(П1) [120]. Эта реакция протекает в среде 0,2 М H IO4. Содержание Fe " в интервале 0,3— 8 мкг/мл определяют по уменьшению оптической плотности растворов в области 600 нм. Оптимальные концент- [c.76]

    Таким образом, наличие наряду с медью примесей кобальта и цинка практически не сказывается на определении меди в никеле. В никеле и его соединениях обычно содержится железо, которое сильно искажает результаты определения меди. Ионы железа можно полностью соосадить с частично осаждаемой гидроокисью никеля, но при этом могут частично соосадиться и ионы меди. Чтобы избегнуть этого, предварительно восстанавливают ионы меди до одновалентного состояния, тогда они остаются в растворе. Ход определения в этом случае следующий в стаканы емкостью 50 мл помещают определенное количество раствора с заданным содержанием ионов меди и никеля, прибавляют к нему 2 мл 1 %-ного раствора аскорбиновой кислоты, 2 мл насыщенного раствора бромида калия раствор нагревают до кипения и осаждают гидроокиси раствором аммиака [c.149]

    Кобальт, по данным В. Г. Сочеванова , мешает определению меди в окисленных и сульфидных рудах, если содержание его в них выше 0,5%. В этом случае Сочеванов рекомендует предварительно осадить медь в виде сульфида (тиосульфатом натрия) или в виде роданида после восстановления меди (И) и присутствующего в растворе железа сернистой или аскорбиновой кислотой. [c.193]

    Интересные возможности для селективного определения цинка дает проведение последовательных операций маскирования и демаскирования цинка. В качестве примера можно привести метод определения цинка в аммиачных растворах в присутствии магния и щелочноземельных металлов. Сначала определяют сумму металлов, затем к раствору добавляют K N и титруют освободившуюся ЭДТА стандартным раствором магния. В присутствии меди, никеля, кобальта и железа [675] используют различные реакции цианидных комплексов с формальдегидом [660]. Формальдегидом или хлоральгидратом демаскируются только комплексы [Zn( N)4] и [ d( N)4]2 . Однако железо образует очень устойчивый комплекс с цианидом только в том случае, если оно присутствует в виде Fe(II), поэтому необходимо добавить к раствору аскорбиновой кислоты для восстановления железа (П1). [c.256]


Смотреть страницы где упоминается термин Кобальт III определение аскорбиновой кислотой: [c.76]    [c.240]    [c.158]    [c.157]    [c.15]    [c.213]    [c.254]   
Новые окс-методы в аналитической химии (1968) -- [ c.240 , c.246 ]




ПОИСК





Смотрите так же термины и статьи:

Аскорбиновая кислота

Аскорбиновая кислота, определени

Кобальт определение



© 2025 chem21.info Реклама на сайте