Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индий комплексонат

    Прямым комплексонометрическим титрованием можно определять многие ионы металлов магния, кальция, стронция, бария, скандия, иттрия, лантаноидов, титана, циркония, гафния, тория, ванадия, молибдена, урана, марганца, железа, кобальта, никеля, меди, серебра, цинка, кадмия, ртути, галлия, индия, таллия, свинца, висмута. Скачок кривой титроваиия при этом находят с помощью подходящего индикатора или физико-химического метода. Если титруемый раствор содержит несколько ионов металлов и реальные константы устойчивости соответствующих комплексонатов мало отличаются между собой, эти ионы титруются вместе. Когда логарифмы реальных констант отличаются более чем на 4 единицы, ионы металлов можно титровать последовательно, допустив при нахождении первого скачка погрешности, не превышающие 1%. На практике это условие выполняется довольно редко и возможности прямого комплексонометрического титрования обычно расширяют маскированием. [c.225]


    Наиболее простой способ маскирования заключается в установлении соответствующей кислотности титруемого раствора. Так, например, ионы железа (III), галлия (III), индия (III), таллия (III), висмута (III), циркония (IV), тория (IV), комплексонаты которых имеют 1 /( >20, можно титровать в сравнительно кислой среде (рН 2), в которой реальные константы устойчивости соответствующих комплексонатов еще достаточно велики. Двухзарядные ионы металлов при этом практически не мешают (см. рис. 45). Аналогично при pH 5 раствором комплексона III можно титровать такие ионы, как А1 +, Со +, N 2+, Си +, 2п +, С(12+, в присутствии ионов щелочноземельных металлов. [c.225]

    Маскирующие свойства комплексона И1 используют для отделения индия (И1) от меди, кадмия, свинца, цинка и олова [709], причем в данном случае используют различную устойчивость указанных комплексонатов в щелочной среде при нагревании. [c.309]

    Сущность метода. Индий определяют объемным трилонометрическим методом, титрование проводят а фоне сплава в присутствии комплексоната меди и реагента 1-(2-пиридилазо)-2-нафтола (ПАН), который является индикатором. [c.232]

    Реагент при pH = 3 -ь 4 с индием образует слабоокрашен-ные растворы, а с медью — комплексное соединение, окрашенное в розовый цвет трилон Б в этих условиях образует с индием более прочное соединение чем с медью. При введении реагента ПАН в раствор индия, содержащий комплексонат меди, возникает розовая окраска в результате образования соединения медь — ПАН. [c.232]

    Свойства дикомплексов НТФ и ГФ мало изучены Методом ЯМР охарактеризованы комплексонаты иттрия и лантана с НТФ YL2 Y(HL)2, LaL2, La (HL) 2 [352] Интересная особенность была обнаружена при исследовании методом ЯМР системы таллий(1П) — ГФ (1 2) Как известно, в изученных в настоящее время комплексах аминокарбоновых лигандов (ИДА, МИДА, НТА) молекулы комплексона равноценно координированы Для [Tl(gph)2] нами была установлена неравноценность координации анионов ГФ (см разд 4) Смешаннолигандные комплексы ГФ и НТФ позволяют стабилизировать в растворе такие легкогидролизующиеся катионы, как индий (П1) [353] и золото(П1) [354] [c.198]

    При соотношении металл лиганд 2 1 и выше, фосфорсодержащие комплексоны образуют с бериллием плохо растворимые полиядерные соединения. Сопоставление устойчивости комплексов трехвалентных непереходных элементов Ifl группы алюминия, галлия, индия и таллия показывает, что устойчивость в ряду нормальных моноядерных комплексонов с лигандами аминокарбонового ряда неизменно возрастает в последовательности Al нитрилтриацетатов значения IgA ML соответственно равны 11,4, 13,6 16,9 и 20,9 [182] (при 20—25°С и р, = 0,1—1,0). В случае комплексонатов ДТПА последовательность сохраняется, но для аналогичных условий устойчивость комплексов выше на 7— 25 порядков 1дК мь=18,6 25,54 29,0 46,0 [182]. Комплекс таллия (П1) [Tldtpa]2- является самым прочным из известных в настоящее время для этого лиганда [182]. [c.359]


    Разнолигандные комплексы обладают значительной устойчивостью. Вероятность их образования нарастает с увеличением радиуса при переходе от алюминия к таллию и по мере уменьшения дентатности комплексона. В случае индия, как правило, число входящих в координационную сферу монодентатных лигандов не превышает трех например, известны весьма устойчивые комплексонаты [In (S N)3ida]2-, [In(S N)3nta] ", [In(S N)2edta]3-. Комплексонаты индия успешно используются для получения сплавов индия и золота из щелочных сред [284] [c.360]

    Повышенная устойчивость комплексонатов галлия и индия была зафиксирована в нормальных комплексонах N,N -6h (2-гидроксибензил)этилендиамин-Ы,Ы -диуксусной кислоты Для обоих элементов значение /Смь оказалось равным —10 [655] (при 25°С и [1 = 0,1). Однако разность в значениях логарифмов констант устойчивости составила всего 0,09. Для фосфорсодержащих комплексонов различия в устойчивости комплексонатов алюминия и индия также оказались незначительными [284]. [c.360]

    В нормальных условиях нелабильными по отношению к межхелатному обмену являются за редким исключением комплексонаты таких катионов, как бериллий(П), платина(П), палладий(П), ртуть(П), кобальт(П1), скандий(П1), ит-трий(П1), лютеций(И1), индий(П1), таллий(П1), хром(П1), платина(IV), цирконий(IV), гафний(IV), ванадий(V), молибден (VI) [320, 325, 347, 812]. Лабильные комплексонаты образуют, как правило, катионы щелочных и щелочноземельных элементов, магния(II), лантана(III), актиноидов [320, 326, 352, 812]]. Промежуточное положение занимают комплексы олова(П), кадмия(П), цинка(П), свинца(П), алюминия(П1) [320,810,813,814]. [c.423]

    Требования, предъявляемые к бифункциональным комплексонам, в основном сводятся к быстрому и эффективному присоединению их к антителу и в то же время достаточно длительному по сравнению с полупериодом распада радиоактивной метки (составляющим от 1 ч до четырех суток) удерживанию катиона в хелатной части молекулы. Таким образом, наряду с эффективной константой устойчивости важной характеристикой такого комплексоната является кинетика потери ионов металла в биосистеме. Было, в частности, показано, что комплекс индия (П1) с ДТПА диссоциирует медленнее, чем аналогичный комплексонат, образованный R—ДТПА [86]. Сообщается, что вопреки значениям термодинамических констант устойчивости в опытах ш vivo комплекс R—ДТПА терял ин-дий(П1) быстрее, нежели R—ЭДТА. Однако в более позднем исследовании in vivo получен противоположный результат [84]. [c.504]

    Применяют для определения алюминия при pH 7—8 методом обратного титрования солью цинка в присутствии пиридина. Барий, кальций и ртуть титруют при pH 10 в присутствии комплексоната магния. Кадмий и кобальт при pH 10 определяют прямым титрованием. Магний, цинк, железо (III) и титан (IV)—методом обратного титрования солью цинка в присутствии пиридина. Галлий (III) при pH 6,5—9,5 определяют обратным титрованием солью цинка. Индий определяют при pH 8—10 в присутствии сегнетовой соли марганец при pH 10 —с добавлением гидроксиламина. Никель и свинец при pH 10—методом обратного титрования солью магния или цинка. Титан (IV) определяют при pH 10 обратным титрованием солью магния или с добавлением комплексоната магния. Ванадий (V) определяют при pH 10 методом обратного титрования солью марганца. Переход окраски от винно-красной к синей. [c.279]

    СНд-ПАР [276], ПАН-2 [8, 87, 91, 596, 626], комплексонат меди с ПАН-2 [625], МАР [2]. При определении 3,4—6,8 м.г галлия 50-кратные количества индия, висмута и кадмия предложено маскировать N-метилглициндитиокарбаминатом [57]. При анализе полупроводниковых сплавов и смесей для холодной пайки [127] золото и медь восстанавливают тиосульфатом, сурьму(П1) маскируют винной кислотой, алюминий — борофторидом. В глицериновых ваннах, содержащих галлий и индий, галлий экстрагируют диэтиловым эфиром из среды 6 М НС1, затем реэкстрагируют и определяют комплексонометрически [596]. Селективность определения резко увеличивается после отделения галлия осаждением диантипирил-пропилметаном в кислой среде [91] или экстракции комплекса хлороформом с последующей реэкстракцией галлия [8]. В последнем случае определению 9,3 м.г галлия не мешают (в мг) А1 — 131 Th — 127 Mg — 118 Со — 105 d — 100 Pb — 60 Мп — 37 и Ni — 36 мешают Bi, In и Tl [8]. [c.170]

    При определении индия в качестве индикаторов используют п-ПАК [95], ПАДЭАФ и его бромпроизводные [146], ПААК [142] и его бромпроизводные [143], ПАР [82, 406], ПАН-2 [583], комплексонат меди с ПАН-2 [596, 625], ПАН-4 [141], МАР [422], МАДЭАФ [298]. [c.171]

    Никель определяют прямым титрованием с использованием в качестве индикаторов п-ПАК [897], ПАН-2 [627], комплексоната меди с ПАН-2 [625], МАН-1 [11] и 2-(2-имидазолилазо)-4-метилфено-ла [897]. Описано определение никеля обратным титрованием избытка ЭДТА растворами солей меди [417, 631] и индия [242] в присутствии ПАН-2, а также раствором соли цинка в присутствии МААК [265]. Методы применяли для определения никеля в рудах, стали [11], изоморфной соли никеля и магния [417], ферритах [242]. Для повышения селективности никель выделяют в форме диметилглиоксимата [11,242]. [c.181]


    Второй метод — титрование индия комплексоном HI оказался весьма удобным благодаря высокой устойчивости комплексоната индия в кислой среде. Таким образом, индий можно титровать почти без предварительного отделения от других элементов. Трейндл применял для этого титрования ртутный капельный электрод и среду с pH 2, охлаждая раствор до 4° С, однако дальнейшие исследования показали, что титровать можно при обычной комнатной температуре. В. М. Владимирова установила, что титрование на ртутном капельном электроде по току восстановления индия лучше всего проводить при —0,7 в (Нас. КЭ) и при pH 1. В этих условиях метод обладает наилучшей избирательностью и индий можно титровать в присутствии очень многих элементов — магния, кальция, стронция, бария, цинка, кадмия, кобальта, марганца, хрома, алюминия. Железо (HI), также образующее весьма прочный комплексонат, надо восстанавливать до железа (II) аскорбиновой кислотой. Медь, свинец, мышьяк восстанавливаются на ртутном электроде при потенциале титрования индия и поэтому могут мешать, если будут присутствовать в относительно больших количествах. Однако при обычном разложении проб и подготовке раствора к анализу мышьяк и свинец удаляются при обработке соляной и серной кислотами, а медь переходит в комплексный аммиакат При осаждении полуторных окислов (вместе с которыми осаждается и индий). Этот метод был затем применен для определения индия в продуктах металлургического производства и в сфалери-товых концентратах с малым содержанием индия. В последнем случае индий приходится отделять экстракцией, при анализе же более богатых индием материалов отделять его обычно не требуется. [c.214]

    Серьезным также является вопрос о скорости образования комплексных соединении с комплексоном, так как для объемных определений можно пользоваться только теми реакциями, которые протекают достаточно быстро. Многие, главным образом многовалентные, катионы образуют в растворах настолько сильно гидратированные ионы (алюминий, хром), что образование ими комплексов протекает медленно. Такие реакции, если их невозможно ускорить путем повышения температуры, вообще не пригодны для комплексометрических определений. Классическим примером в этом отношении является алюминий, прямое комплексометрическое определение которого вызывает значительные затруднения. На самом деле, однако, комплекс алюминия достаточно прочен, если он образуется при нагревании в умеренно кислом растворе. Это свойство алюминия делает возможным его косвенное комплек-сометрическое определение, основанное на обратном титровании избыточного количества комплексона титрованным раствором цинковой или магниевой соли или солью трехвалентного железа. Аналогичным образом и железо образует комплекс сравнительно медленно, и его лучше титровать при повышенной температуре. Это же можно сказать и о катионах третьей группы периодической системы. Например, индий можно непосредственно титровать только при кипячении раствора. С аналогичными затруднениями встречаются при определении катионов, когда последние уже связаны в другие комплексы, например винной кислотой. В этом случае имеется равновесное состояние между тартратным комплексом и комплексонатом металла и титрование растягивается происходит возврат окраски индикатора. Повышенная температура титруемого раствора часто помогает преодолеть это затруднение, примером этого служит титрование свинца в присутствии винной кислоты или марганца в присутствии цианида. Другие примеры будут приведены и объяснены в соответствующих местах. [c.300]

    В связи с этим можно ожидать, что внутрикомплексные соединения, легко растворимые в водной фазе (например, все комплексы, содержащие гидрофильные группы,— оксалаты, тартраты, цитраты, комплексонаты и т. п.) и практически нерастворимые в органических растворителях, не будут экстрагироваться в органическую фазу. Внутрикомплексные соединения, растворимые в обеих фазах, могут экстрагироваться лишь частично [например, ацетилацетонаты цинка, кобальта(П), никеля, марган-ца(И), свинца(П), лантанидов и т. д.], и только соединения, практически нерастворимые в водных средах, но легко растворимые в органических растворителях [например, ацетилацетопаты алюминия, галлия, индия, железа (III), бериллия и т. д.1, могут экстрагироваться количественно. Таким образом, на основе данных о растворимости для экстракционного отделения можно выбрать наиболее подходящий хелат. [c.50]

    Прямое титрование индия трилоном Б проводят в присутствии комплексоната меди и реагента ПАН [414]. При обратном способе титрованиия избыток трилона Б титруют при pH = = 2,5 3,0 раствором хлорида л елеза в присутствии сульфо-салициловой кислоты, как при определении циркония (см. стр. 40), или раствором азотнокислого свинца в присутствии индикатора ксиленолового оранжевого, как при определении алюминия. [c.232]

    Нафтилазо)- и 7-(5,7-дисульфо-2-нафтилазо)-8-оксихи-нолин-5-сульфокислоты образуют с ионами Tpii при pH 2 и выше растворимые соединения желтого цвета. При добавлении к таким растворам комплексона III образуется комплексонат Ti " и выделяются свободные азосоединения, при этом раствор окрашивается в фиолетовый цвет. Переход окраски отчетлив. Реагенты применяются как комплексонометрические инд -каторы при титровании Т1".  [c.296]

    Амперометрическое титрование индия(III) ЭДТА возможно благо- даря высокой устойчивости комплексоната индия в кислой среде. Таким образом можно индий титровать без отделения от других элементов при анализе богатых индием материалов. При анализе образцов с малым содержанием индия его приходится отделять экстракцией. [c.213]


Смотреть страницы где упоминается термин Индий комплексонат: [c.133]    [c.135]    [c.283]    [c.283]    [c.115]   
Химический анализ в ультрафиолетовых лучах (1965) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Индий

Индит

Комплексонаты



© 2025 chem21.info Реклама на сайте