Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление осмотическое Осмотическое

    По аналогии с газовым давлением осмотическое давление разбавленного раствора прямо пропорционально концентрации раствора и обратно пропорционально его объему. С увеличением концентрации растворенного вещества возрастает осмотическое давление раствора с увеличением объема раствора осмотическое давление уменьшается. Таким образом, к осмотическому давлению приложим закон Бойля—Мариотта. [c.94]


    Давление пара растворителя над раствором ниже, чем над чистым растворителем. Вследствие этого растворитель переходит в раствор, увеличивая его объем и заставляя жидкость в трубке подниматься подъем продолжается до тех пор, пока гидростатическое давление р не уравновесит тенденцию растворителя к проникновению в раствор. Давление р называют осмотическим давлением для разбавленных растворов оно пропорционально числу молекул растворенного вещества, приходящемуся на единицу объема. Этот эффект весьма значителен так, осмотическое давление 0,35%-ного (0,010 М) раствора сахарозы в воде при 20 °С составляет 0,27 ат. Расчет, основанный на этих данных, показывает, что р 0,35%-ного раствора водорастворимого полимера молекулярной массы 70 000 составляет 0,013 ат, или 7,0 см водяного столба, что, естественно, легко поддается измерению. [c.528]

    Осмотические процессы также присущи животным тканям и клеткам. Поскольку животные клетки обычно представляют собой уплотненный слой цитоплазмы, постольку внешне осмос проявляется несколько иначе, однако принципиально картина не отличается от описанной в случае растительных клеток. Если поместить эритроциты в концентрированный раствор того или иного вещества, они вследствие экзосмоса уменьшаются в объеме, сморщиваются, что хорошо можно наблюдать под микроскопом. Когда эритроциты помещены в раствор с меньшим осмотическим давлением, чем давление клеточного раствора, наблюдается значительное увеличение объема клеток. Если эритроциты поместить в дистиллированную воду, то идет настолько интенсивный эндосмос, что в результате тургора эритроциты лопаются. Во внешнюю среду выделяется гемоглобин, благодаря чему раствор окрашивается в красный цвет. Такое явление называется гемолизом. Поэтому кровоточащие раны нельзя обрабатывать водой, так как это усиливает кровотечение. Клетки сохраняют нормальное состояние и в том случае, когда осмотическое давление внутриклеточного и внешнего раствора одинаково. [c.97]

    Метод обратного осмоса заключается в фильтровании растворов под давлением через полупроницаемые мембраны, пропускающие растворитель и полностью или частично задерживающие молекулы либо ионы растворенных веществ. В основе описываемого способа лежит явление осмоса — самопроизвольного перехода растворителя через полупроницаемую перегородку в раствор (рис. 0-2,а). Давление, при котором наступает равновесие (рис. 0-2,6), называется осмотическим. Если со стороны раствора приложить давление, превышающее осмотическое (рис. 0-2, в), то перенос растворителя будет осуществляться в обратном направлении, что отразилось в названии процесса обратный осмос . [c.15]


    Осмотические давления растворов могут достигать десятков мегапаскалей. Рабочее давление в обратноосмотических установках должно быть значительно больше, поскольку их производительность определяется движущей силой процесса— разностью между рабочим давлением и осмотическим. Так, при осмотическом давлении 2,45 МПа (25 кгс/см ) для морской воды, содержащей 3,5% солей, рабочее давление в опреснительных установках рекомендуется поддерживать на уровне 6,85— 7,85 МПа (70—80 кгс/см ). [c.16]

    Движущей силой ультрафильтрации является разность давлений (рабочего и атмосферного) по обе стороны мембраны. Так как осмотические давления ВМС малы по сравнению с рабочим давлением жидкости, то при вычислении движущей силы процесса ультрафильтрации обычно их не учитывают. Если используемая в ультрафильтрации мембрана не селективна по отношению к ВМС (при разделении ВМС и ВМС), то в этом случае осмотические давления ВМС при расчете движущей силы ультрафильтрации также не учитываются. При высоких концентрациях ВМС осмотические давления могут достигать значений, соизмеримых с рабочим давлением жидкости, и тогда движущая сила определяется по уравнению (0.1). Обычно ультрафильтрацию проводят при сравнительно невысоких давлениях 0,3—1 МПа (3—10 кгс/см ). [c.16]

    Для расчета движущей силы процесса обратного осмоса, а в ряде случаев и ультрафильтрации (например, при большой концентрации высокомолекулярных соединений) необходимо знание осмотического давления раствора. Вместе с тем, в литературе отсутствуют обобщенные данные по расчету осмотического давления, а имеющиеся справочные значения осмотического давления или осмотических коэффициентов не систематизированы и не собраны воедино. Все это затрудняет проведение расчетов мембранных аппаратов и систем для осуществления процессов обратного осмоса и ультрафильтрации. [c.19]

    Экспериментальные данные по осмотическому давлению некоторых растворов приведены в Приложении I, а значения практических осмотических коэффициентов — в Приложении П. Методы экспериментального определения значений этих параметров рассмотрены на стр. 37. Для растворов, опытные значения я и Ф которых отсутствуют или вызывают сомнение, могут быть использованы методы расчета осмотических давлений, приведенные ниже. [c.21]

    Исследования влияния внешних факторов на процесс ЭОФ (давления, гидродинамической обстановки, температуры, концентрации и др.) показали, что величина К-р изменяется в зависимости от этих факторов так же, как и селективность процесса обратного осмоса, проведенного в идентичных условиях. Таким образом, условия, в которых можно осуществить процесс ЭОФ, неразрывно связаны с обратноосмотическим потоком воды через поровое пространство заряженных электрическим полем обратноосмотических полупроницаемых мембран, со строением ДЭС в поровом пространстве и поверхностных над ним слоях. Поэтому процесс избирательной проницаемости ионов и молекул через заряженные электрическим полем обратноосмотические мембраны можно проводить только при давлении, превышающем осмотическое давление раствора. [c.200]

    Рассмотрим [134] напорный канал аппарата (например, рулонного типа), состоящего из нескольких последовательно соединенных элементов (рис. У-Ю), с двумя проницаемыми стенками и турбулизатором между ними (на рис. У-Ю турбулизатор не показан). Исходный раствор входит в канал в точке х = Ь и движется вдоль канала, причем часть раствора в виде фильтрата проходит через мембрану с постоянной скоростью Wм. Полагаем, что величина пропорциональна рабочему давлению (т. е. считаем, что гидравлические потери малы по сравнению с рабочим давлением) и осмотическое давление в процессе разделения меняется незначительно. Этот случай, например, может встретиться на практике при обессоливании воды с начальной концентрацией до 3—5 г/л (при более высоких концентрациях соли в исходной воде при расчете [c.269]

    Осмотические явления широко распространены в природе. В технике используют обратный осмос, происходящий при приложении к раствору давления, превышающего осмотическое. Тогда через полупроницаемую перегородку выдавливается чистый растворитель. Обратный осмос применяется для очистки сточных вод и опреснения морской воды. [c.244]

    Для очистки веществ весьма перспективным является так называемый обратный осмос — разделение раствора за счет приложения к нему давления, превышающего осмотическое. Расчеты показывают, что этот метод значительно дешевле традиционных способов разделения (например, вымораживанием, дистилляцией и др.)- Его применение особенно целесообразно для смесей сходных веществ (например, изомеров). [c.162]

    Что касается влияния вида растворенного вещества и растворителя, то оказалось, что в растворах, к которым применимо последнее уравнение, осмотическое давление совсем не зависит ни от вида растворенного вещества, ни от растворителя и коэффициент пропорциональности К в этом уравнении является универсальной постоянной, которая к тому же численно равна газовой постоянной / , Таким образом, зависимость осмотического давления от концентрации н температуры может быть представлена соотношением [c.305]


    Обратный осмос — один из самых перспективных способов опреснения. Известно, что если между пресной и соленой водой поместить полупроницаемую мембрану, то в результате осмотического переноса молекулы воды из пресной переходят в соленую. Для осуществления обратного процесса необходимо создать давление больше осмотического. Процесс привлекателен тем, что опреснение воды (стоков) происходит без изменения фазового состояния. Общие затраты энергии на опреснение 1 м воды составляют 10—30 МДж. [c.6]

    Гидростатическое давление в сосуде 1, пропорциональное высоте h, по абсолютной величине будет равно осмотическому давлению. Термин осмотическое давление раствора недостаточно строг, так как без полупроницаемой перегородки осмотическое давление не обнаруживается и раствор в сосуде оказывает на стенки лишь обычное гидростатическое давление. [c.359]

    Для очистки от растворенных примесей начинают применять метод обратного осмоса, или гиперфильтрации. Метод основан на отфильтровывании воды из раствора через полупроницаемые мембраны под давлением, превышающим осмотическое. Для этого метода используются ацетатцеллюлозные мембраны различной производительности по воде и селективности по растворенным веществам. Процесс осуществляется при температуре окружающей среды, без фазовых превращений. [c.346]

    Движущей силой процесса осмоса является разность химических потенциалов растворителя и раствора. Возникающее при этом давление называют осмотическим. Осмотическое давление является функцией размеров и концентрации частиц растворенного вещества. В коллоидных системах осмотическое давление ослаблено вследствие относительно больших по сравнению с молекулами размеров и соответственно малой концентрации коллоидных частиц. Несмотря на это применение современных методов анализа позволяет надежно регистрировать значения осмотического давления, посредством которых возможно изучать коллоидные системы, в частности изменение размеров коллоидных частиц при воздействиях на систему и их распределение по размерам в растворах различной концентрации. [c.19]

    Если осмос направлен в раствор, помещенный в ограниченный объем пространства, то в этом растворе возникает давление л, противодействующее осмосу и называемое осмотическим давлением. Значение осмотического давления, возникающего в разбавленном растворе, взаимодействующем через мембрану с чистым растворителем, рассчитывается по уравнению Вант-Гоффа  [c.154]

    Это уравиение называют законом Вант-Гоффа. В него входит молярная (моль/л) концентрация раствора (равновесная ). Осмотическое давление пропорционально количеству частиц в растворе, т. е. это — коллигативное свойство раствора. Если в уравнении (361) вместо с подставить п/У, то оно примет форму уравнения состояния идеального газа. Таким образом, можно сказать, что осмотическое давление равно давлению, при котором находились бы частицы растворенного вещества, если бы сни заполняли весь объем раствора в виде идеального газа. Однако в действительности имеют дело не с идеальным газом, а с реальными молекулами вещества, взаимодействующими с молекулами растворителя. [c.283]

    Основы физической теории растворов были заложены уже во второй половине XIX в. Сванте Аррениусом и Вант-Гоффом. Согласно этой теории процесс растворения рассматривается как чисто физический процесс равномерного распределения частиц растворяемого вещества по всему объему растворителя, который представляет собой некую индифферентную среду. При этом допускают, что никакого взаимодействия между молекулами растворителя и частицам растворенного вещества не существует. Физическая теория растворов подкреплялась тем, что целый ряд свойств растворов — повышение температуры кипения, понижение температуры замерзания, давление пара, осмотическое давление —действительно зависит только от концентрации растворенного вещества, но не зависит от его природы. Таким образом, растворы, со- [c.80]

    Если прикладываемое к рассолу давление превысит осмотическое, то вода будет проходить через мембрану в обратном направлении, другими словами, пресная вода будет выдавливаться из рассола через мембрану. Этот процесс, называемый обратным осмосом, схематически показан на рис, 17,8, Морскую или солоноватую воду накачивают под высоким давлением в камеры, стенки которых изготовлены из полупроницаемых мембран. При прохождении воды через мембраны локальная концентрация солей у стенки мембраны повышается, что приводит к повышению осмотического давления и уменьшению потока пресной воды. Чтобы воспрепятствовать этому, через камеру нужно непрерывно прокачивать морскую воду. Поток пресной воды через мембрану пропорционален прикладываемому давлению. Но максимальное дав,пение, которое можно приложить к мембране, определяется ее собственными характеристи- [c.155]

Рис. 17.8. Схема процесса опреснения воды методом обратного осмоса. Давление, создаваемое насосом высокого давления, превышает осмотическое давление соленой воды относительно пресной, Благодаря этому пресная вода просачивается через полупроницаемую мембрану. Чтобы предотвратить накопление соли вблизи мембраны, насос должен постоянно прокачивать по трубам соленую воду. На практике трубы должны иметь очень малый диаметр, и поэтому установку приходится изготовлять из многих тысяч труб. Рис. 17.8. <a href="/info/24358">Схема процесса</a> <a href="/info/1486383">опреснения воды методом обратного осмоса</a>. Давление, создаваемое <a href="/info/147597">насосом высокого давления</a>, превышает <a href="/info/2404">осмотическое давление</a> <a href="/info/71997">соленой воды</a> относительно пресной, Благодаря этому <a href="/info/175594">пресная вода</a> просачивается <a href="/info/152847">через полупроницаемую</a> мембрану. Чтобы предотвратить накопление соли вблизи мембраны, насос должен постоянно прокачивать по трубам <a href="/info/71997">соленую воду</a>. На <a href="/info/1581073">практике трубы</a> должны <a href="/info/1633351">иметь очень</a> <a href="/info/39604">малый диаметр</a>, и поэтому установку приходится изготовлять из многих тысяч труб.
    Следовательно, осмос обусловлен стремлением молекул растворителя выравнять свою концентрацию по обе стороны мембраны. Осмос количественно характеризуется осмотическим давлением. Осмотическое давление равно тому внешнему гидростатическому давлению, которое необходимо приложить к системе для того, чтобы осмос прекратился. [c.21]

    При сближении частиц на расстояние меньшее, чем удвоенная толщина адсорбционного слоя, происходит перекрытие (взаимопроникновение) адсорбционных слоев, и концентрация НПАВ в области перекрытия увеличивается по сравнению с ее значением в адсорбционном слое. При этом, если среда представляет собой хороший растворитель для вещества, образующего адсорбционный слой, возникает осмотическое да вление, подобное давлению набухания (рис. Х1П, 6). Это обуславливает приток жидкости из объема раствора в область перекрытия адсорбционных слоев и возникновение расклинивающего давления. Осмотическое давление, в зависимости от природы взаимодействия НПАВ и растворителя, может быть функцией изменения энтропии или изменения энтальпии системы в области перекрытия. В первом случае падение энтропии определяется тем, что в области перекрытия уменьшается число конформаций гибких цепей стабилизатора, что в конечном счете вызывает повышение агрегативной устойчивости. Во втором случае в области перекрытия некоторые контакты между молекулами воды и полярными группами НПАВ заменяются контактами между молекулами НПАВ, т. е. происходит дегидратация адсорбционного слоя. Это приводит к возрастанию энтальпии системы, вызывает отталкивание, т. е. также повышает агрегативную устойчивость системы. [c.411]

    Из изложенного совершенно ясно, что при исследовании осмотического давления растворов высокомолекулярных электролитов всегда необходимо учитывать эффект Доннана. Практически для получения правильных результатов экспериментатор либо определяет концентрацию электролитов, находящихся в системе, и затем вводит в расчеты соответствующую поправку, либо измеряет осмотическое давление в присутствии избытка низкомолекулярного электролита. В последнем случае найденное осмотическое давление отвечает осмотическому давлению одних высокомолекулярных понов. [c.475]

    Следовательно, осмотическим давлением разбавленных растворов неэлектролитов называется давление, которое производило бы то же число молекул растворенного вещества, если бы оно в виде идеального газа занимало при данной температуре объем, равный объему раствора. Однако для растворов электролитов оказалось, что экспериментально измеряемое осмотическое давление больше вычисленного по уравнению (Х1У.55). Опыт показывает, что растворы электролитов ведут себя в отношении осмотического давления так, будто они содержат большее число частиц, чем число молекул растворенного вещества. Поэтому для растворов электролитов в уравнение (Х1У.55) вводится поправочный коэффициент I  [c.375]

    С1< С2. Осмотическое давление в стакане О больше, чем в сосуде 5. Раствор в цилиндре, как говорят, гипотоничен ло отношению к раствору в стакане. Растворитель будет двигаться из цилиндра в стакан. Манометр будет отмечать понижение давления внутри осмотического сосуда 5. [c.68]

    Обратный осмос (гиперфильтрация) — это непрерыв ный процесс молекулярного разделения растворов путем их фильт рования под давлением через полупроницаемые мембраны, задер живающие полностью или частично молекулы либо ионы раство ренного вещества. Гиперфильтрация используется для выделенш низкомолекулярных растворенных веществ (например, Сахаров, со лей, кислот). При приложении давления выше осмотического (рав новесного) осуществляется перенос растворителя в обратно направлении (по сравнению с обычным осмотическим переносом)— от раствора к чистому растворителю через мембрану и обеспечивается достаточная селективность (разделяющая способность] очистки. Необходимое давление, превышающее осмотическое дав ление растворенного вещества в растворе, составляет 0,5—1 МШ при концентрации солей 2—5 г/л и 5—10 МПа при концентрации 20—30 г/л [254]. [c.150]

    Растворы, имеющие осмотическое давление, равное осмотическому дав- 1ению сыворотки крови, носят название изотонических. Изотоническим сыворотке крови человека и млекопитающих л ивотных будет 0,9-процеит-ный раствор ЫаС1, называемый такл<е физиологическим раствором. Растворы с более низким осмотическим давлением называются гипотоническими. (Соответственно, растворы с более высоким осмотическим давлением — гипертоническими. [c.507]

    Равновесие растворов (а) и (в) может осуидествиться в общем случае только при различии в давлениях в этих растворах. 3t i pa )iio Ti. давлений есть осмотическое давление, препятствующее прохождению пз а) п (а) как растворителя, так и иоиов, для которых мембрана проницаема. [c.571]

    Таким образом, при равновесии разность химических потенциалов растворителя в (а) и (а) не равна нулю, а уравновещивается разностью давлений по обе стороны мембраны [уравнение (XXI, 22)]. Эта разность давлений есть осмотическое давление раствора (а) относительно раствора (в), которое возникает только при наличии определенных условий. Разность химических потенциалов иоиов одного знака, как видно из уравнений (XXI, 27) и (XXI, 28), также не равна нулю, а уравновещивается разностью давлений и разностью электрических потенциалов по обе стороны мембраны. Сложив уравнения (XXI, 27) и (XXI, 28), получим  [c.572]

Рис. 18-14. Опыт, демонстрирующий осмотическое давление. Если какое-либо вещество растворено в растворителе, а раствор отделен от резервуара чистого растворителя мембраной, пропускающей молекулы растворителя, но не частицы растворенного вещества, растворитель просачивается в сосуд с раствором до тех пор, пока в нем не возникнет достаточное избыточное давление, называемое осмотическим давлением, которое воспрепят- Рис. 18-14. Опыт, демонстрирующий <a href="/info/2404">осмотическое давление</a>. Если какое-либо <a href="/info/3506">вещество растворено</a> в растворителе, а <a href="/info/173064">раствор отделен</a> от <a href="/info/935782">резервуара чистого</a> растворителя мембраной, пропускающей <a href="/info/101400">молекулы растворителя</a>, но не <a href="/info/146135">частицы растворенного</a> вещества, растворитель просачивается в сосуд с раствором до тех пор, пока в нем не возникнет достаточное <a href="/info/13462">избыточное давление</a>, называемое <a href="/info/2404">осмотическим давлением</a>, которое воспрепят-
    Осмотическое давление. Осмотическое давление коллоидных растворов прямо пропорционально числу частиц коллоида в единице объема. Однако, так как по величине и массе коллоидные частицы в огромное число раз превосходят обычные молекулы, то естественно, что число молекул растворенного всщества, например в 17о-ном молекулярно-дисперсном растворе, в соответствующее число раз превосходит число частиц коллоида, находящихся в таком же объеме 1%-ного коллоидного раствора. Вследствие этого осмотическое давление коллоидных растворов много меныие, чем осмотическое давление истинных растворов. Так, осмотическое давление 1%-ного раствора сахара (молекулярный вес сахара М=342 прн комнатной температуре равно 0,725 атм, т. е. 743 см вод. ст., а желатина, частичный вес которой равен примерно 20 000, т. е. раз в 60 больше, чем у сахара, обладает в 1%-ном растворе осмотическим давлением всего в 10 см вод. ст. [c.511]

    Осмотическое давление растворов было обнаружено Нолле (1748). При погружении в воду стеклянной трубки, закрытой с одного конца полупроницаемой перегородкой и заполненной водным раствором сахара, он заметил увеличение объема раствора в трубке, вызванное проникновением воды через полупроницаемую перегородку. Явление проникновения растворителя через полупроницаемую перегородку в раствор получило название осмоса, а силу, заставляющую растворитель переходить через полупроницаемую перегородку, стали называть осмотическим давлением. Осмотическое давление можно также определить как дополнительное гидростатическое давление, препятствующее переходу растворителя через полупроницаемую перегородку, разделяющую раствор и растворитель или два раствора различной концентрации. [c.358]

    Как видно, по форме (126.1) совпадает с известным законом идеальных газов. Уравнение Вант-Гоффа можно получить на основании следующих термодинамических соображений. Растворитель будет проникать в раствор через полупроницаемую перегородку до тех пор, пока не установится равновесие. При равновесии химические потенциалы растворителя в чистом состоянии и в растворе будут одинаковы = Xi- При постоянных температуре и давлении Ц] = = onst, а fil = /(Л, Xi) причем = Р + п, если Р — первоначальное давление, я —осмотическое давлейие. Так как = f(P , Xi), то [c.359]

    Если с принять за массовую концентрацию, то в знаменателе будет плотность в квадрате. Результаты анализа в данном методе могут иметь погрешности, обусловленные взаимодействием между макромолекулами в растворах. Для исключения этих погрешностей в определенпи молекулярной массы полимеров, мнцеллярной массы ПЛВ или просто массы частиц осмотически активных золей вместо метода сравнения применяют абсолютный метод Дебая. Для выражения интенсивности рассеянного света по этому методу используют уравнение Эйнштейна, получаемое на основе учета флуктуаций оптической плотности, возникающих в результате изменения осмотического давления и концентраций. Так как основной причиной рассасывания флуктуаций концентраций является изменение осмотического давления, то это дает возможность связать соотношения для рассеяния света и осмотического давления. Используя уравнение осмотического давления до второго внри-ального коэффициента Л2, учитывающего мел<частичное взаимодействие, Дебай получил следующее соотношение между мутностью раствора полимера, его концентрацией и молекулярной массой полимера  [c.264]

    Давленне набухания Рн это давление, оказываемое на стенки жесткого сосуда, пробой глины, взаимодействующей с проникающей через специальные отверстия в стенке водой. При взаимодействии сухой глины с водой давление набухания складывается из суммарного расклинивающего давления Рраск, осмотического давления Роем и капиллярного давлення АР—Рп Рра.сн Р см + АР. [c.64]

    При умягчении природных вод обратным осмосом через ацетилцеллюлозную мембрану действием рабочего давления в 6,86 МПа содержание СаСОз в них снижается с 843 до 1 мг/л. Каково осмотическое давление на мембрану установки Во сколько раз рабочее давление больше осмотического Степень электролитической диссоциации СаСОз принять равной 0,96, плотности растворов 1000 кг/м , температура процесса 20 С. [c.174]

    Смеси газов и растворы имеют ряд общих свойств и в области явлений диффузии. Частицы тех и других способны самопроизвольно равномерно распределяться по всему объему. Особенно это свойство характерио для сильно разбавленных растворов. Поведение молекул неэлектролита в таком растворе аналогично поведению идеального газа. Применив для обобщения результатов измерений осмотического давления законы термодинамики и молекулярио-кинетическую теорию газов, Вант-Гофф впервые установил, что между состоянием вещества в очень разбавленном растворе и газообразным состоянием имеется полное качественное и количественное сходство (опыт 18). Другими словами, осмотическое давление сильно разбавленных растворов подчиняется законам идеальных газов. [c.38]


Смотреть страницы где упоминается термин Давление осмотическое Осмотическое: [c.210]    [c.242]    [c.79]    [c.50]    [c.27]    [c.98]   
Химия коллоидных и аморфных веществ (1948) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Осмотическое давление

Фаг осмотический шок



© 2025 chem21.info Реклама на сайте