Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Енолы кислотность

    Кислотные свойства атома О в карбонильной группе находят отражение в таутомерном равновесии кетонов и альдегидов с соответствующими енолами  [c.490]

    Отличить ОДИН механизм от другого непросто. Выше отмечалось, что если субстрат имеет два или три атома водорода в а-положении по одну сторону от группы С = 0, то катализируемую основанием реакцию невозможно остановить на стадии введения одного атома галогена. Причина этого заключается в том, что электроноакцепторный эффект первого атома галогена повышает кислотность остальных атомов водорода, т. е. группа СНХ более кислая, чем группа СНг, поэтому первоначально образующийся галогенокетон превращается в енолят-ион, а следовательно, и галогенируется быстрее, чем исходный субстрат. [c.431]


    Эфиры енолов также легко подвергаются кислотному гидролизу. Уравнение реакции аналогично (Г. 7.10в) [см. также схему (Г.4.41)]. Циклические эфиры енолов дигидропиран [см. уравне- [c.64]

    Влияние галогенов на скорость образования енолят-аниона мо кно объяснить и другим образом, например, тем, что атомы галогена увеличивают кислотность водорода, отщепляемого основанием. Увеличивая кислотность водорода, галогены увеличивают скорость образовапия енолят-аниона. [c.58]

    При кислотном катализе нуклеоф. атаку на вторую молекулу карбонильного соед. осуществляет енол  [c.114]

    Увеличение СН-кислотности карбонильного соед. достигается введением в а-положение к карбонильной группе электроотрицат. заместителей, что, в свою очередь, приводит к значит, повышению содержания енола (см. табл.). [c.500]

    При кислотном катааизе на п звой стадии происходит присоединение протона кислоты к кислороду карбонила с образованием прото-нированного спирта, который на второй стадии превращается в енол  [c.91]

    Свойства фенолов. 1. Фенолы имеют большую кислотность, чем спирты, уступая, однако, в этом отношении карбоновым кислотам. Они растворяются в водных растворах щелочей, причем их соли, феноляты, лишь слабо гидролизуются водой. Двуокись углерода осаждает 41Снолы из водных щелочных растворов, и таким способом они могут быть отделены от карбоновых кислот. Следовательно, ароматический остаток усиливает кислотные свойства гидроксилыюй группы. Это вызывается, по-видимому, той же причинои, которая обусловливает сильно кислотный характер енолов. Более же сильную кислотность енолов по сравнению с насыщенными спиртами мы объясняли тем, что в этих соединениях гидроксильная группа находится у двойной связи в фенолах гидроксильная группа также связана с ненасыщенным атомом углерода (по формуле бензола Кекуле она находится у двойной связи ).  [c.538]

    Ацетилдибензоилметам существует в енольной ([зорме и в кетоформе, которые можно выделить в чистом виде. Енол плавится при 101 —102 , обладает кислотными свойствами, растворяется в щелочах и дает с хлорным >1 елезом красное окрашива-ние. Кетоформа плавится при 107—110 , растворяется в щелочах лишь при длнтель-но.м встряхивании (перегруппировка в енол) и не дает окращивания с хлорным желе-,зом. Енол неустойчив и перегруппировывается в кетосоединение, особенно легко нри нагревании. [c.638]

    Реакция со спиртами является общей для диазосоединений, но чаще всего ее проводят с использованием диазометана для получения метиловых эфиров или с использованием диазокетонов для приготовления а-кетоэфиров, что обусловлено доступностью этих диазосоединений. В случае диазометана [493] метод дорог и требует особой осторожности. Он обычно применяется для метилирования спиртов и фенолов, стоимость которых высока или которые доступны лишь в малых количествах, так как эта реакция проводится в мягких условиях и дает высокий выход продуктов. Реакционная способность гидроксисоединений возрастает по мере увеличения их кислотности. Обычные спирты в отсутствие катализатора не реагируют. Катализатором может служить HBF4 [494], ацетат родия (II) Rh2(OA )4 [495] или силикагель [496]. Более кислые фенолы реагируют и без катализатора. Оксимы и кетоны, для которых характерен значительный вклад енольной формы, вступают в реакцию 0-алкилирования, давая соответственно 0-алкилоксимы и эфиры енолов. Механизм [497] здесь тот же, что и в реакции 10-6  [c.122]


    На первой стадии происходит отрыв кислого протона под действием основания, что приводит к образованию енолят-иона, который соединяется с бораном (кислотно-основная реакция по Льюису). Затем группа R мигрирует, замещая уходящий галоген [1251]. После этого осуществляется еще один акт миграции на этот раз группа BR2 мигрирует от углерода к кислороду, в результате чего образуется енолборинат 141 [1252], который гидролизуется. Конфигурация группы R сохраняется [1253]. [c.221]

    Енолизация — это кислотно-основная реакция (т. 2, реакция 12-22), в которой происходит перенос протона от а-атома углерода к реактиву Гриньяра. Карбонильное соединение превращается в енолят-ион, из которого при гидролизе регенерируется исходный альдегид или кетон. Енолизация играет важную роль не только для затрудненных кетонов, но также и для тех кетонов, для которых характерно относительно высокое содержание енольной формы, например для сложных -кетоэфиров и [c.367]

    Такая реакция подобна реакции нейтрализации енол здесь играет роль кислоты. Однако кислотные свойства фенола весьма слабы водные растворы фенолята натрия имеют в результате частичного гидролиза щелочную реакцию, как и другие соли силъных оснований со слабыми кислотами. Если через такой раствор пропускать оксид углерода (IV), то фенол выделяется в свободном виде  [c.152]

    ГИДОВ или кетонов содержание енольного изомера обычно менее 1%, но для некоторых карбонильных соединений оно возрастает до 50%. Кето-енольное превращение может осуществляться не только в условиях основного катализа, но и под действием кислоты. Промежуточное соединение при кислотно-катализируе-мом превращении образуется за счет протонирования карбонильной группы. Если образовавшийся промежуточный катион отщепляет протон от кислородного атома, то образуется кето-изомер, а если протон уходит из а-положения, то возникает енол. [c.125]

    Среди аргументов в пользу енольной структуры была ссылка на реакцию с щелочными металлами, протекающую с образованием солей, поскольку одно время считали, что такое взаимодействие характерно только для гидроксильной группы. Однако образование енолят-аниона ле требует существования енола, так как кето-изомер может депротоиироваться непосредственно. Подобные кислотные свойства для углеводородов неизвестны, например ацетилен (разд. 3.4.3) и циклопентадиен (гл. 19). [c.246]

    На первой стадии присоединением бутадиена к 4-метокси-2,5-толу-хинону I был получен цис-аддукт И, который через енолят изомеризо-вался в транс-изомер III. В результате восстановления III алюмогидридом лития образовался метиловый эфир ентриола IV, кислотным гидролизом которого был получен соответствующий р-оксикетон, дегидрати- [c.104]

    Самым характерным свойством фенолов является их слабая кислотность, которая обусловлена тем, что гидроксил связан с ненасыщенным атомом углерода ароматического ядра, т. е. наличием еноль-ной группировки —СН = С(ОН)—. Сам фенол —слабая кислота, (р/Ск=10,0). Он образует соли (феноляты) с едким натром, но не с карбонатом натрия. Такое поведение типично для фенолов, и этим они отличаются от карбоновых кислот, которые реагируют даже с бикарбонатами. Таким образом, если исследуемое ароматическое соединение эастворяется в едком натре лучше, чем в воде, но его растворимость а воде не повышается в присутствии карбоната натрия, то возможно, что оно принадлежит к ряду фенолов. Константы диссоциации замещенных фенолов не подчиняются какой-либо закономерности. ИсклЮ чение представляет ряд нитрофенолов все три мононитрофенола — более сильные кислоты (р/(к = 7,2—8), чем фенол еще зыше кислотность 2,4-динитрофенола (р/(1, = 4,0) и пикриновой кислоты, кислотность которой почти равна кислотности минеральной кислоты. Увеличение кислотности фенолов при введении нитрогрупп обусловлено стабилизацией анионной формы. Стабилизация анионной формы нитрогрупп аналогична подавлению основной диссоциации аминов и точно так же может быть объяснена индукционным и резонансным эффектами. [c.278]

    Качественные реакции. — Типичные фенолы отличаются от большинства других органических соединений своей характерной слабой кислотностью, проявляющейся в легкой растворимости в растворах едкой щелочи и нерастворимости в растворе карбоната натрия (исключение составляют нитрофено/ ы, обладающие более кислыми свойствами). Большинство фенолов, подобно алифатическим енолам, дает характерное окрашивание с очень разбавленным водным или спиртовым раствором хлорного железа вследствие образования комплексных солей железа (фенол — фиолетовую, крезол — синюю, пирокатехин — зеленую, резорцин — темно-фиолетовую). [c.303]

    На скорость реакции с диазометаном влияет- прежде всего подвижность водорода (кислотность) соединения, которое подвергается метилированию поэтому с диазометаном легче всего реагируют кислоты, труднее—фенолы и енолы, а спирты практически не реагируют совсем. Пройз-водные спиртов, содержащие в молекуле несколько электроотрицательных заместителей, как, папример, трихлорэтиловый спирт, а также тар-троновая и мезовинная кислоты и их сложные эфиры, реагируют с диазометаном, но не в эфирном растворе, а в среде углеводородов, например в гептане и циклогексане . [c.338]


    Значительно лучшие результаты при ацилировании малоиового и циануксусно-го эфиро в получаются при соотношении хлорангидрид кислоты енолят натрия=1 2. Это объясняется большей кислотностью моиоацилироваиного эфира по сравнению с неацилированным и протеканием вследствие этого реакции обмена, как это видно по схеме  [c.612]

    При ацилировании образуется трикарбонильное соединение, которое обладает большей кислотностью, чем исходное дикарбониль-ное соединение (почему ), и поэтому енолят трикарбонильного соединения способен оторвать катион от енолята дикарбонильпого  [c.165]

    Важнейщими в органическом синтезе субстратами, подвергающимися алкилированию, являются -бифункциональные соединения 5-кетоэфиры, )5-дикетоны и т. д. Для этих соединений достаточную концентрацию енолят-аниона могут создавать относительно слабые основания. Алкилирование при обычных условиях с использованием иного, чем аммиак, растворителя или без него происходит по наиболее кислому атому водорода. Например, ацетилацетон при обработке щелочным металлом или алкоксидом щелочного металла образует моноанион, который алкилируется по метиленовой, а не по метильной группе, так как кислотность первой больще и именно она отдает протон основанию. [c.193]

    Принципиально иной результат дает использование системы амид натрия - жидкий аммиак. Основные свойства этой системы оказываются достаточно сильными, чтобы отщепить протон не только от наиболее кислой метиленовой группы, но и от следующей по кислотности группы. Образовавшиеся дикарбанионы представляют собой амбидентные нуклеофилы, так как в них имеются два способных атаковаться атома углерода (помимо атома кислорода, атака по которому возможна для любого енолят-аниона). Важно, однако, что реакция с одним молем галоидного алкила происходит [c.193]

    Чрезвычайно легко эфиры енолов образуются из р-дикарбо-нильных соединений, что объясняется не только увеличением кислотности а-метиленовых атомов водорода, но и появлением (в результате превращения) группировки, содержащей сопряженные двойные связи 0 С—С=С—0R. Так, р-этоксикрото-нат получается из ацетоуксусного эфира за 24 ч при 20° в присутствии нескольких капель H2SO4 [92—93]. Реакция проводится в отсутствие спирта [c.64]

    Приведенные в этом разделе данные иаилучшим образом согласуются между собой они взяты из указанных выше публикаций (или вычислены с использованием этих данных) и сверены с оригинальными источниками. Хэммонд [8] приводит более ранние сведения о кето-еноль-ных системах и кольчато-цспиой таутомерии [2, 8]. Необходимо и.меть в виду, что содержание равновесных форм в системах кетон —енол зависит от растворителя и температуры, а в некоторых случаях и от кон-цептрации соединения [1, 2, 4]. Кислотность енолов обсуждается в книгах [8, 9]. Обзор данных по кольчато-цепной таутомерии см. [22]. [c.61]

    Это соедршеиие является иростьш эфиром енола и при кислотном гидролизе превращается в 2-циклогексенон в результате перегруппировки а,у-ненасыщенного кетона в изомерный ем а,р-енои  [c.1016]

    Аналогичный ход рассуждений применим и для катализа тех же реакций основанием. Скорость рацемизации, галогенирования и изотопного обмена для фенил-втор-бутилкетона оказывается одинаковой и при катализе гидроксид-иоиом. Однако скорость этих реакций, катализируемых осиоваиием, в тысячу раз превьппает скорость кислотно-катализируемого процесса. Из этого следует, что интермедиат, образующийся в присутствии основания, должен быть гораздо более реакциониоспособной частицей по сравнению с ковалеитньш енолом. Такой частицей [c.1318]

    Только недавно были впервые синтезированы 2Н- и 4Н-пира-ны — чрезвычайно реакционноспособные соединения, о которых пока известно сравнительно мало. 3,4-Дигидро-2Н-пиран и 2,3-дигидрофуран легко образуют циклические эфиры енолов. Дигид-ропиран нашел широкое применение в органическом синтезе в качестве защитной группировки для спиртов, так как он легко превращается в ацеталь при кислотном катализе. Ценность этих про- [c.372]


Смотреть страницы где упоминается термин Енолы кислотность: [c.76]    [c.216]    [c.86]    [c.202]    [c.235]    [c.176]    [c.383]    [c.141]    [c.216]    [c.1319]    [c.1321]    [c.1322]    [c.1365]    [c.1665]    [c.126]    [c.126]    [c.127]    [c.133]    [c.148]    [c.151]    [c.88]   
Принципы органического синтеза (1962) -- [ c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Еис-еноляты

Енолы

енол



© 2025 chem21.info Реклама на сайте