Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенол электрофильного замещения в ароматическом ряду

    Пятичлеиные ароматические гетероциклические соединения, такие, как. фуран, тпофен п пиррол, галогепнруются, нитруются и сульфируются совершенно так же, как и другие ароматические соединения. Они, как правило, гораздо реакционноспособнее бензола и сходны по своей реакционной способности с фенолом и анилином (гл. 22 и 23) поэтому для электрофильного замещения в ряду гетероциклических соединений часто не требуются сильные катализаторы, как для замещения в бензоле. Так как и пиррол, и фуран разлагаются в присутствии протонных кислот, для них необходимы несколько-иные условия проведения обычных реакций. В реакции сульфирования в этих случаях источником 30,, вместо дымящей серной кислоты служит комплекс, образуем .1Й пиридином и 80 в качестве нитрующего агента можпо применить ацетилнитрат. [c.633]


    Подобно тому, как пиридин сравним по своим реакциям с нитробензолом, пятичленные гетероциклы во многом сравнимы с такими активированными ароматическими молекулами, как анилин или фенол. Атомы углерода гетероциклов благодаря наличию избыточного электронного заряда легко атакуются электрофилами, подобно тому, как атомы углерода, занимающие орто- или тгара-положение по отношению к -[-М-заместителю в анилине или феноле (или фенолят-анионе). В то же время наличие гетероатома, как одного из звеньев ароматического кольца, делает возможным осуществление ряда специфических для данного гетероцикла реакций. Ароматичность фурана менее явно выражена, чем ароматичность пиррола или тиофена это означает, что фуран способен легче вступать в реакции присоединения, чем пиррол и тиофен, и гораздо более легко, чем вещества типа анилина, для которых реакции присоединения встречаются редко. Ниже рассмотрены реакции электрофильного замещения, реакции восстановления и окисления и различные реакции этих трех пятичленных гетероциклов. [c.515]

    Ароматический характер фурана, пиррола, тиофена и пиридина проявляется в их способности вступать в реакции электрофильного замещения Если пиридин малореакционноспособен из-за акцепторного влияния атома азота (на кольце расположен положительный полюс диполя), напоминая по свойствам нитробензол, то фуран, пиррол и тиофен, наоборот, очень легко вступают в реакции электрофильного замещения (на кольце находится отрицательный конец диполя) подобно ароматическим аминам и фенолам Ряд активности в реакциях электрофильного замещения следующий [c.896]

    Как известно, в ряду бензола активации ароматического ядра способствуют электронодонорные заместители, в особенности заместители, обладающие большим +М-эффектом (—ОК, —ЫКг-группы). Поэтому по реакционной способности в реакциях электрофильного замещения пятичленные гетероциклы мол<но сравнить с фенолами, аминами и даже фенолят-анионами (см. уравнение в ответе 5). В то же время (см. ответы 2, 3) действие кислых агентов может вызвать вытягивание пары электронов гетероатома из ароматического секстета, что ведет к понижению устойчивости таких гетероциклов и к их осмолению. [c.277]

    Существует ряд катализируемых кислотами (или кислотами Льюиса) реакций, в ходе которых М-замещенные ароматические амины и 0-замещенные фенолы перегруппировываются в соответствующие орто- или /гара-замещенные в ядре соединения. Из числа таки Г реакций уже обсуждались перегруппировка диазоаминосое-динений (триазенов) в аминоазосоединения (разд. Г, 8.3.3), перегруппировка фенилгидроксиламина в /г-аминофенол (разд. Г, 8.1) перегруппировка сложных эфиров фенолов по Фрису (разд. Г, 5.1.7.1). В ходе этих реакций заместитель полностью отделяется от субстрата. Отщепившийся остаток выступает в роли катиона в реакции электрофильного замещения в ароматическом ядре. Исследования показывают, что эта реакции протекают межмолеку-лярно, например  [c.283]


    Различие в местах преимущественной атаки первичных и вторичных ароматических аминов (по сравнению с фенолами) объясняется, по-видимому, различиями в относительной электронной плотности соответствующих участков молекулы. В отличие от ряда других реакций электрофильного замещения ароматических соединений, реакция азосочетания чувствительна к относительно небольшим различиям в электронной плотности (что отражает довольно низкую реакционную способность катиона РЬЫг как электрофила). Аналогичные различия в электронной плотности, естественно, имеют место и для фенолов, но для этих соединений, как уже отмечалось, выбор места атаки в большей мере зависит от относительной прочности образующихся связей в случае аминов это различие для двух альтернативных продуктов сочетания выражено в гораздо большей степени. [c.165]

    Благодаря этой стабилизации такой карбкатион в реакциях электрофильного ароматического замещения сравнительно мало активен. В обычных условиях реакция Манниха хорошо идет только с такими ароматическими соединениями как фуран, тиофен, пиррол, некоторые производные пиразола, индол и другие гетерО циклы, а также фенолы бензольного, нафталинового и гетероциклического ряда и некоторые подобные соединения [28]. [c.207]

    Механизм электрофильного замещения в ряду пространствен-но-затрудненных фенолов. Взаимодействие пространственно-затрудненных фенолов с электрофильными реагентами следует рассматривать с общих позиций теории электрофильного замещения в ароматическом ряду. [c.53]

    Хотя алкоксигруппы также являются активирующими и орто.пара-ориентирующими в реакциях электрофильного замещения в ароматическом ряду, они значительно менее активны, чем ОН-группа. Вследствие этого простые эфиры, как правило, не вступают в те реакции (разд. 25.17—25.21), которые требуют повышенной активности субстрата реакции азосочетания, реакция Кольбе, реакция Реймера — Тимана и т. д. Подобное различие в реакционной способности, вероятно, объясняется тем, что в отличие от фенола простой эфир не может ионизоваться с образованием чрезвычайно активного ф нолят-иона. [c.764]

    Электрофильное замещение неводородных атомов в ряду пространственно-затрудненных фенолов. Свойства ароматической системы фенольных соединений обусловливают еще одну их особенность, отчетливо проявляющуюся при взаимодействии с электрофильными реагентами. Очень часто фенолы, уже содержащие заместители в наиболее реакционноспособных положениях (в случае одноядерных одноатомных фенолов — в пара- и обоих орто-положениях), способны реагировать с электрофильными реагентами таким образом, что входящая частица вытесняет один из уже имеющихся заместителей при наличии атомов водорода в других положениях ароматического кольца. В отличие от классического типа электрофильного замещения (замещение атома водорода) такие реакции часто классифицируют как заместительное нитрование, заместительное азосочетание и др. Подобные превращения возможны и в случае других ароматических соединений однако в ряду фенолов они протекают особенно легко. [c.59]

    В главе 1, написанной Томсоном, автором известной монографии по природным хинонам, рассмотрены структура и реакционная способность фенольных соединений, важнейшие типы природных фенолов, свойства и реакции фенольного гидроксила (способность к образованию водородных связей, этерификация, окисление и др.), вопросы таутомерных превращений в фенольном ряду. Особо интересен здесь раздел, касающийся основных типов реакций окислительного присоединения как возможной модели свободно-радикальных процессов при биосинтезе природных фенолов. Нельзя, однако, не отметить, что химия фенольных соединений в этой статье освещена весьма поверхностно. Так, например, автор почти не рассматривает вопрос о способности фенолов претерпевать переход ароматической структуры в циклогексадиеноновую, что составляет одно из общих свойств фенольных соединений, которые они проявляют в радикальных и электрофильных реакциях замещения [8]. В общем виде фенол-диеноновую перегруппировку в реакциях фенолов можно описать следующей схемой  [c.6]

    В нем заместители, находящиеся слева от водорода, облегчают обмен по сравнению с незамещенным бензолом, а сульфогруппа, нитрогруппа и галоиды затрудняют его. Например, бензол обменивает водород с 0 504, но не с ОзО" (в разбавленных кислотах), и с фенолом в диметиланилине идет обмен с ОзО , а в ионе фенолята — даже с фенолом и водой. Этот ряд заместителей совпадает с таким же рядом по легкости нитрования, галоидирования и других типичных реакций электрофильного замещения в ароматическом ядре. Направляющее действие заместителей па водородный обмен также совпадает с известными правилами электрофильного замещения. Например, в феноле или анилине обмениваются водородные атомы лишь в орто- и параположениях, но не в мета-положениях [652, 954]. Все это приводит к заключению, что обмен водорода в ароматических соединениях с сильными кисло- [c.297]


    Л. Галогенирование. Простым примером электрофильного ароматического замещения в ряду фенолов является реакция галогенироваиия. Обычно фенолы и их простые эфиры настолько реакционноспособны, что для проведения реакции галогенирования не требуются катализаторы (типа А1С1з). Тщательно подбирая условия реакции, можно ввести один, два или три атома галогена. [c.296]

    Более селективным кажется кислот-но-основной ферментативный катализ (такой распространенный в химии in VIVO), который активирует одну молекулу фенола как электрофильную, другую — как нуклеофильную. Далее все идет по классической схеме электрофильного замещения в ароматическом ряду, к которому даже нейтральные фенолы весьма склонны (схема 9.6.4). [c.256]

    В реакциях замещения аренового водорода на галогены активность галогенов уменьшается в ряду С12> Вга Гг- В качестве электрофильных галогенирующих агентов в реакции используются молекулярные галогены или комплексы галогенов с разнообразными кислотами Льюиса (РеС1з, РеВгз, А1С1з, А1Вгз, галогениды Оа, 8Ь, 8п, Т1 и др.). Очень часто применяют растворы С12 или Вг2 в уксусной кислоте. Галогенирование аренов молекулярными галогенами в отсутствие кислот Льюиса или Бренстеда, поляризующих связь галоген—галоген, эффективно лишь для алкилбензолов, содержащих не менее трех алкильных хрупп, фенолов, простых эфиров одно- и многоатомных фенолов и ароматических аминов. В других случаях необходим катализ кислотами Льюиса или Бренстеда. [c.464]

    Во всех этих случаях стабильность карбониевого иона оценивалась на основании одного и того же критерия степень рассредоточения или концентрации заряда вследствие действия электроноакцепторной или электроно-донорной групп. Как будет показано ниже, этот подход, который столь хорошо оправдал себя при рассмотрении реакций элиминирования, присоединения и электрофильного замещения в ароматическом ряду, применим также для рассмотрения еще одного важного класса органических реакций, протекающих с образованием положительно заряженных частиц — нуклеофильного замещения в алифатическом ряду по Ьмеханизму (разд. 14.14). Этот подход пригоден также для трактовки реакций нуклеофильного замещения в ароматическом ряду (разд. 26.12), в результате которых образуются отрицательно заряженные частицы. Наконец, этот же подход поможет лучше понять вопросы, связанные с кислотностью или основностью таких соединений, как карбоновые кислоты, сульфокислоты, амины и фенолы. [c.354]

    Ионы диазония — слабые электофилы и могут взаимодействовать с активираванными ароматическими кольцами. При добавлении к щелЪчным или нейтральным растворам солей диазония фенолов или ароматических аминов происходит реакция сочетания, приводящая к азосоединениям (рис. 7.30,а). Азосоединения окрашены и используются как красители, особенно ценные, когда они содержат функциональные группы, позволяющие фиксировать (закреплять) их на волокне. Примером может служить промышленный азокраситель конго красный (рис. 7.30,6). Механизм азосочетания в основных чертах сходен с механизмом других реакций электрофильного замещения в ароматическом ряду. [c.162]

    Эффективным агентом реакции сочетания, проходящей гладко и быстро, является положительно поляризованный диазониевый радикал АгЫг, который благодаря большой электрофильности атакует акионоидные или нуклеофильные центры молекулы, например о- и л-положения фенолята натрия или анилина. Механизм реакции диазониевых солей с ароматическими фенолами или аминами еще не полностью освещен и есть различия в объяснении известных фактов. Хотя качественные наблюдения касаются рекордного количества случаев взаимодействия различных диазотированных аминов с разнообразными фенолами и аминами, а в некоторых случаях проведены и кинетические исследования, было бы интересным иметь более обширные данные о сочетании компонент с определенными и прогрессивно варьируемыми изменениями в строении. Имеющихся сведений, однако, достаточно для того, чтобы показать, что реакция азосочетания проходит по механизму, согласующемуся с теорией замещения в ароматическом ряду. [c.460]

    При реакции электрофильного ароматического замещения, как и при реакции электрофильного присоединения, электрофил взаимодействует с л-зарядом молекулы с образованием положительно заряженного интермедиата. Главное различие между этими двумя реакциями состоит в том, что в завершающей стадии реакции присоединения интермедиат присоединяет анион, в то время как завершающей стадией реакции замещения является отщепление протона с образованием ароматической системы (гл. 10, разд. 4, Б). В обоих случаях ориентация заместителя определяется сопряжением свободной пары кислорода с углеводородным остатком. Активация бензольного кольца при наличии алкокси-заместителя определяется сопряжением свободной нары электронов кислородного атома с делокализованной системой электронов кольца, особенно сильным в переходном состоянии (стр. 232). Сопрян<ение того же типа возможно для неспарепных электронов кислорода оксигруппы фенола, но в дополнение к этому — и это будет рассмотрено в следующем разделе — может произойти ионизация водорода, что приведет к возникновению полного отрицательного заряда на атоме кислорода, который будет взаимодействовать с ядром. Соответственно заместитель ОН (точнее, 0 ) является еще более активирующим и орто,пара-ориентирующим заместителем, чем ОК, в условиях, благоприятствующих ионизации водорода. Различие между этими двумя группами имеет большое практическое значение. Так, хотя простые ароматические эфиры легко вступают во все типичные д-реакции, фенол способен реагировать с рядом весьма слабых электрофильных реагентов, которые обычно не атакуют ароматического кольца даже в случае эфиров. Более того, фенол настолько легко способен давать полизамещенные производные, что следует подбирать специальные условия, если необходимо ввести лишь одну группу. Оба эти аспекта химии фенолов подробно рассмотрены в следующих параграфах. При этом намеренно не рассматривается поведение их эфиров, ибо оно в основном может быть предсказано, исходя из данных гл. 10, разд. 4, за исключением отдельных случаев, которые будут обсуждены. [c.341]

    Подобно связи с — 8, связь С — N обычно обнаруживает значительную устойчивость и инертность, и в большинстве реакций первичных и вторичных аминов затрагивается N — Н-, а не С — N-связь. Ароматические амины, конечно, участвуют в электрофильном замещении, происходящем по ароматическому кольцу, и реакция при этом протекает примерно с такой же легкостью, как реакция фенолов с электрофилами. Можно ожидать, что С — N-связь в этиленимине ( H2)2NH, циклическом азотистом аналоге 1,2-эпоксиэтана, будет гораздо легче разрываться, чем связь С — Nb других аминах, точно так же как С — 0-связь в циклическом эфире легче разрывается, чем обычная С — 0-связь. Это предположение полностью оправдывается в реакциях этиленимина (см. ниже реакцию 1), который, как предполагается, имеет тот же тип связей, что и связи в циклопропане и 1,2-эпоксиэтане, причем внутренние углы связей равны примерно 60° (1,047 рад). Однако, помимо этих реакций, свойственных лишь этиленимину, известен еще ряд других реакций, в которых разрывается связь С — Nb аминах того или другого типа. В некоторых случаях расщеплению подвергается связь между углеродом и положительно заряженным азотом, точно так же как разрыв связей С — О и С — 8 часто осуществляется после протопирования кислорода или образования сульфониевого соединения. [c.457]

    Мы не будем останавливаться на истории развития представлений о механизме электрофильных замещений в ароматических соединениях. Известный параллелизм между этими реакциями и реакциями шрисоединения ло двойным связям в оле-финах уже давно привел к появлению взглядов о ступенчатом характере механизма замещения. Следует отметить, что еще в 1911 г. Лапорт выШ азал мнение, касающееся замещения в бензольном ряду, в котором были предугаданы результаты экспериментальных исследований, выполненных лишь в последнее время. Так, например, Лапорт полагал, что бромирование фенола не обходится без образования промежуточного продукта XXI [c.171]

    Наконец, существует еще метод инфракрасного анализа, который был использован только Фукуто и Меткафом [40]. Как видно из рис. 14, авторы обнаружили в ряду исследованных ими диэтилфенилфосфатов хорошую корреляцию между антихолинэстеразной активностью и частотой поглощения связи Р — О в ароматических соединениях. Однако здесь есть одно неясное обстоятельство. Можно было ожидать, что, когда группа X в соединении (R0)2P(0)0X обладает явно выраженными электрофильными свойствами, она будет оттягивать электроны по связи Р—О—X, ослабляя ее и сдвигая частоту поглощения растянутой Р—О—X-связи в сторону более низких значений (такие связи можно сравнить с пружиной — когда пружина слабая, частота ее колебаний мала). Действительно, это было подтверждено для частоты поглощения Н— О-связей в замещенных фенолах (Инграм и др. [62]). В то же время Фукуто и Меткаф получили противоположные результаты. В настоящее время эту аномалию ничем нельзя объяснить. [c.112]

    Под термином вытеснение понимают замещение электрофильным реагентом не атома водорода, а любого другого остатка. На основании представлений о механизме процесса замещения, изложенных в предыдущем разделе, оказалось возможным предсказать, какие заместители будут вытесняться ионом диазония. При процессах замещения водород отщепляется в виде протона, т. е. в виде кислоты Льюиса, и при этом а-электронная пара остается у ароматического ядра. Все заместители, которые легко образуют подобного типа отщепляющиеся группы, сравнительно просто поддаются вытеснению электрофильными реагентами, и в частности ионом диазония. При этом сульфогруппа (1—50 ) отщепляется в виде трехокиси серы, а карбонильная группа (—СОО , соответственно —СООН) в виде двуокиси углерода. Такого рода реакции вытеснения известны уже в довольно значительном количестве и некоторые из них попользуются для технических целей. Следует заметить, что сочетание -оксиббнзойной кислоты в л-положении, сопровождающееся отщеплением карбоксильной группы, происходит легче, чем сочетание в о-положение.В литературе описан ряд случаев вытеснения атомов галоидов диазогруппой в фенолах. Эти работы представляют интерес для весьма широкого круга химиков, так как вероятно при такого рода вытеснениях первоначально образуется катион галоида, который, в свою очередь, является весьма сильным электрофильным реагентом. Поллаком и Гебауер-Фюльнегом 2 было обнаружено весьма важное обстоятельство, а именно что из 1-галоид-2-нафтола всегда легко образуется диазоэфир, но не всегда можно получить С-азосоединение. Не исключена возможность, что эти диазоэфиры иногда ошибочно принимались за азокрасители. Как по- [c.179]


Смотреть страницы где упоминается термин Фенол электрофильного замещения в ароматическом ряду: [c.530]    [c.73]    [c.1084]    [c.124]    [c.228]    [c.42]    [c.73]    [c.56]    [c.289]    [c.84]    [c.162]    [c.145]    [c.9]   
Органическая химия (1974) -- [ c.757 , c.765 , c.766 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение электрофильное

Электрофильность



© 2024 chem21.info Реклама на сайте