Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклоалканы энергия

    Энергия напряжения в циклоалканах и типы напряжений [c.1791]

    Нормальный угол между двумя валентностями насыщенного атома углерода (с гибридизацией зр ) равен 109°28. Как установлено Байером в 1885 г., в циклоалканах валентности углерода отклоняются от их нормальной ориентации, вследствие чего возникает напряжение в цикле, энергия молекулы возрастает. В трехчленном кольце циклопропана каждая валентность имеет отклонение от нормального направления на 24°44, в четырехчленном-на 9°44, в циклопентане-на 0°44, в циклогексане-на 5° 16, но молекула циклогексана не является плоской, и в ней отсутствует напряжение. [c.51]


    Можно ожидать, что количество тепла, выделяемого при сгорании 1 моля циклоалкана, будет возрастать с увеличением молекулярной массы соединения, а количество тепла, приходящееся па одну метиленовую группу, будет оставаться постоянным. Однако данные, приведенные в табл. 7-2, показывают, что количество энергии, приходящееся на одну метиленовую группу, в циклопропане больше, чем в любом другом циклоалкане. Теплота сгорания в расчете на метиленовую группу достигает минимального значения в циклогексане, а затем начинает возрастать, достигая максимального значения в циклононане. Такое поведение в сочетании с изменением химической реакционной способности привело к классификации, представленной в табл. 7-1. [c.268]

    Оценка энергий С-С и С-Н связей в циклоалканах по данным их потенциалов ионизации [c.53]

    Из особенностей электронной структуры аренов, рассмотренных в предыдущем разделе, следуют важнейщие химические свойства (реакции) аренов. Бензол, алкилбензолы СвНзК, в которых К — остатки алканов и циклоалканов, полифенилы крайне неохотно вступают в реакции присоединения по л-связям. Эта особенность обусловлена стабильностью замкнутых (К = б, 10, 14, 18 и т.д.) ароматических л-орбиталей их молекул, очень высокой энергией делокализации (сопряжения) л-электронов. Поэтому арены и не-бензоидные ароматические углеводороды легко присоединяют только лишь озон. Способность к реакциям присоединения Ог, СЬ, Вгг, Ма, N02 появляется лишь у конденсированных аренов на узловых атомах углерода, соединяющих соседние бензольные ядра  [c.366]

    Значения свободной энергии образования циклопентана и его производных находятся в хорошей корреляции с действительным содержанием этих соединений в легких фракциях нефтей. Весьма высокой термической устойчивостью обладает адамантан или трицикло[3.3.1.1 ]декан — трициклический циклоалкан, впервые обнаруженный в нефтях в 1933 г. и имеющий следующую структуру  [c.57]

    Бензол не подвергается свободнораднкальному замещению под действием хлора или брома, которое является типичной реакцией для алканов и циклоалканов. Энергия связи С-Н в бензоле составляет 110 ккал/моль, что значительно превышает энергию вторичной СН-связи в алканах (95 ккал/моль). Поэтому уже первая стадия предполагаемого цепного радикального замещения оказывается эндотермической, что препятствует процессу замещения  [c.1002]

    Оказалось, что гидрогенолиз этих циклоалканов удовлетворительно описывается уравнением первого порядка энергии активации гидрогенолиза циклононана и циклодекана равны соответственно 209 и 163 кДж/моль. [c.158]

    Как и в случае циклопентанов, реакция протекает по первому порядку. Кажущиеся энергии активации гидрогенолиза циклогексана и метилциклогексана равны соответственно 67 и 59 кДж/моль, что практически не отличается от значений, приведенных для гидрогенолиза этилциклопентана на Ru/ [229] и циклогексана на RU/SIO2 [252]. Все это говорит в пользу представлений о единстве механизма гидрогенолиза пяти- и шестичленных колец на Ru-катализаторе. По-видимому, на других обсуждаемых выше катализаторах, в первую очередь на Rh/ , гидрогенолиз циклоалканов протекает по такому же или достаточно близкому механизму. [c.171]


    Процессы деметилирования являются частным случаем процессов парофазной гидрогенизации и гидрокрекинга, но их химические цели — отщепление метильных заместителей без затрагивания ароматических ядер — заставляют проводить такие превращения в жестких условиях, что накладывает на них некоторые специфические особенности. В самом деле, ионное отщепление метильных заместителей энергетически почти невозможно из-за высокой энергии образования иона Н3С+ (см. гл. 2), следовательно в процессах деме-тилирования необходимо обеспечить исключительное протекание радикальных реакций. Последние усиливаются больше всего с ростом температуры так, что при 450 —500 °С начинают преобладать даже процессы деметилирования циклоалканов (см. стр. 228). С другой стороны, рост температуры сдвигает равновесие [c.327]

    Состав циклоалканов ряда циклогексана приведен в табл. 7.5. Из нее видно,что количество циклогексана изменяется в широких пределах —от 1% (масс.) в бакинсь ой нефти Грязевой Сопки до 18% (масс.) в сургутской нефти — и значительно превышает содержание циклопентана. Содержание 1 1етилциклогексана, имеющего меньшую свободную энергию по сравнению с циклогексаном, превышает содержание циклогексана н 2—6 раз. Для ряда нефтей (эхабинская, паромайская, сургутская, грозненская) метилциклогексан является основным компонентом [36,5—50% (масс.)]. Во фракции н. к, — 125°С обнаружены в довольно зпачитель юм количестве алкилциклогексаны Сд. Меньше всего их содержится в грозненской парафинистой нефти [35% (масс.)], в то время как в бакинских нефтях (Грязевая Солка и Нефтяные Камни) эти соединения доминируют [93—94% (масс.) в расчете на фракцию].  [c.126]

    Устойчивость молекул циклоалканов можно рассмотреть исходя из принципа сохранения системой минимума свободной энергии Гиббса их образования. С изменением длины цепи циклоалкана на одну СНо-группу происходит ис1менение свободной энергии молекулы на 8,60 кДж при 300 К- [c.141]

    Многие из реакций, характерных для алканов, присущи н циклоалканам. Так, многие циклоалканы вступают в реакции каталитического дегидрирования, ионного и свободно-ради-кального галогснирования, окисления и нитрования без изменения скелета или разрыва углерод — углеродной связи. Различия в химическом поведении циклоалканов часто обусловлены наличием избыточной энергии напряжения. [c.30]

    Адсорбционная хроматография позволяет отделить более полярные гетероатомные соединения и арены от менее полярных алканов и циклоалканов, осуществить первичное концентрирование сераорганических соединений нефтяных фракций. Возможность разделения обусловлена различием энергии адсорбции, например на оксиде алюминия [195] алканов 0,084, аренов 0,25— 0,50, сульфидов 3,18—5,53, эфиров 7,41, кетонов 14,0, сульфокси-дов 16,7, ароматических аминов 18,4, фенолов 31,0, ароматических кислот 79,6 кДж/моль. [c.86]

    Факторы, влияющие на теплоту сгорания в расчете на СИг-группу в этолг ряду циклоалканов, объединяются термином напряжение , а дополнительная энергия, возникающая при этом в молекуле, называется энергией напряжения. Стандартами для сравнения служат циклогексановое кольцо или алкан с длинной цепью и тот, и другой считаются практически свободными от напряжения. [c.268]

    Молекулярные сита МаХ имеют размер пор 0,8 нм, проникновение в которые разветвленных алканов и циклоалканов несколько затруднено. В то же время молекулы нормальных алканов сво бодно диффундируют внутрь кристаллической структуры адсорбента и энергия адсорбции для них больше, чем для разветвленных алканов и циклоалканов. [c.129]

    Здесь мы рассмотрим прежде всего соотношения, наблюдаемые в циклогексане. В нротивоположность другим циклоалканам с размером щ кла до С12 он имеет почти ненапряженные конформеры. Наиболее стабильной является форма кресла (а). Еще в 1890 г. Мор установил, что в этом конформере все углы между связями равны тетраэдрическим (109 5 ), следствием чего является отсутствие какого-либо углового наиряжения. Кроме того, в этой форме отсутствуют заслоненные конформации. Две другие конформации циклогексана — форма ванны ил [ лодки (б)] и твист-форма [форма искаженной ванны ( )] — также лин1ены угловых напряжений. Однако из-за наличия в них заслоненных или близких к заслоненным конформаций за счет возникаюн1.их при этом ван-дер-ваальсовых сил отталкивания между атомами водорода в положениях 1,4 эти формы богаче энергией соответственно на 23,0 и 19,9 кДж Моль"  [c.111]

    Для метода характеристических сумм используют масс-спектры, полученные при высокой энергии ионизирующих электронов (70 эВ), для метода молекулярных ионов чаще используют масс-спектры низких энергий (10— 2 эВ). При этом резко падает интенсивность пиков осколочных ионов (становятся неотличимыми от фона) и одновременно повышается интенсивность пиков молекулярных ионов, что облегчает их выделение из смеси, и дает возможность более точного определения изотопных пиков. Уменьшение энергии ионизирующих электронов позволяет снизить интенсивность побочных процессов, таких, как выделение алкенов из алкил-бензолов, полициклических циклоалканов. и др. [181 —183]. Низковольтная масс-спектрометрия используется крайне редко (за исключением анализа азотсодержащих соединений). [c.133]


    Различия в химическом поведении циклоалканов часто обусловлены наличием избыточной энергии напряжения. В зависимости от размеров цикла циклоалканы подразделяют на малые (Сз, С4), нормальные (С5-С7), средние (Са-Сп) и макроциклы (от и [c.13]

    На рис.24.1 приведена зависимость энергии напряжения от размера цикла для циклоалканов СзНб - С16Н32. На основании величин общей энергии наиряження все циклоалканы можно разделить на четыре группы  [c.1793]

    Конформационные свойства циклоалканов с девятью и более углеродными атомами исключительно сложны. Несколько конформаций циклононана были изучены расчетным путем [33,48]. В этом случае также было найдено, что некоторые из них весьма близки по энергии. Для кристаллического гидробромида циклоно-ниламина была установлена экспериментально конформацня искаженное кресло-ванна [44]. Рентгеноструктурные исследования показали, что производные циклодекана в твердом состоянии принимают конформацию ванна-кресло-ванна. Согласно данным дифракции электронов, эта конформация является основной и для самого циклодекана [49]. При 130°С в газовой фазе 49 3% молекул принимают конформацию ванна-кресло-ванна и 35 3% — конформацию искаженная ванна-кресло  [c.93]

    Горб напряжения в средних циклах. Из табл. 2.10 видно, что значения ЭНЕК быстро уменьшаются от циклопропана к циклогексану, затем опять возрастают, достигая максимума для циклононана и циклодекана, после чего снижаются почти до постоянного значения. Энергии напряжения и энтальпии циклизации для циклоалканов Сд—С13 фактически являются приближенными, поскольку величины АЯ (газ.) рассчитаны, исходя из теплот испарения или сублимации, ошибка в определении которых может достигать 10 кДж/моль и более. Тем не менее, нет никаких сомнений, что средние циклоалканы являются более напряженными, чем циклогексан и циклодекан. Причины этого были обсуждены выше. [c.118]

    Молекулярно-механические расчеты циклоалканов. Наиболее простые методы расчета на основе молекулярной механики могут быть применены к циклобутанам и более крупным кольцам. Большие отклонения углов от тетраэдрического значения в циклопропане лежат вне предела функций изгиба, используемых для больших колец. Бойд [75] и Аллинджер [76] использовали для четырехчленных циклов отдельный набор параметров, чтобы достигнуть удовлетворительных результатов, а Шлейер [33] применил модифицированную функцию изгиба в случае больших деформаций тетраэдрических углов. Предсказанные теплоты образования циклоалканов С5—Сд обычно хорошо совпадают с экспериментальными значениями (см. табл. 2.10). В случае больших колец возникают две проблемы. Первой является недостаток надежных экспериментальных данных, а второй — нахождение правильной конформации молекулы с минимальной энергией. В таких случаях экспериментальное значение АЯ (газ.) относится [c.118]

    В алканах (натфимер, этане СН3СН3) и циклоалканах (например, циклопен-тане С5Н10) атом углерода образует четыре неполярные ковалентные о-связи (С-С и С-Н). Эти четыре связи С-атома не отвечают одной з-и трем / -связям, которые, естественно, были бы неэквивалентны по энергии и другим свойствам, а возникают в условиях гибридизации одного 5- и трех / -электронов. [c.45]

    Из данных табл. 2.1.7 можно заключить, что прп переходе от циклопропана к циклогексану стабильность циклоалканов вначале увеличивается, затем к циклононану надает и в области больших циклов снова достигает максимума. Особенно высоки энергии напряження у малых и средних циклов. [c.208]

    ТАБЛИЦА 2.1.7. Теплоты сгорания и энергия напряжения циклоалканов [c.209]

    Химические свойства циклоалканов во многом совпадают со свойствами алканов. Так, для насыщенных циклических углеводородов характерны прежде всего реакции радикального замещения. Только циклопропан и циклобутан, а также би- и полициклические углеводороды, содержащие 3- или 4-члепные кольца, ведут себя особым образом. Из-за низкой энергии образования связей С—С в этих соединениях они вступают в реакции присоединения, сопровождающиеся раскрытием кольца. [c.214]

    Отсюда энергия напряжения в молекуле циклопропана оценивается как ДЕ = ДН°зксп - ДН°адд = 27.5 ккал/моль Оценки энергий напряжения для других циклоалканов приведены в табл. 4.1. [c.50]

    Энергии напряжения ДЕ ряда циклоалканов [c.50]

    В насыщенных углеводородах алифатического (алканах) и алициклического (циклоалканах) рядов имеются только хр -гиб-ридизованные атомы углерода (табл, 5.1). Для этих соединений характерны неполярные С рз—С рз и практически неполярные С рэ—Н а-связи, обладающие достаточной прочностью и не склонные к гетеролитическому разрыву под действием электро-фильных или нуклеофильных реагентов. В результате насыщенные углеводороды инертны в большинстве гетеролитических реакций. Возможными для них остаются радикальные процессы, в которых участвуют обладающие высокой энергией, весьма реакционноспособные радикальиыё астицы. Аналогично ведут себя ненапряженные циклические насыщенные углеводороды, в частности циклоалканы с обычной, средней иабольшой величиной цикла (см. табл. 5.1), [c.117]

    Теплоты сгорания циклоалканов свидетельствуют, что циклопропан имеет наибольший избыток энергии в расчете на одну СН. -группу по сравнению с циклогексаном (табл. 15), т. е. связь С—С в циклопропане имеет меньшую энергию, чем в циклогексане. [c.163]

    Адсорбционная хроматография. Адсорбционная хроматография позволяет отделить более полярные гетероатомные соединения и арены от менее полярных алканов и циклоалканов, осуществить первичное концетрирование сераорганических соединений нефтяных фракций. Возможность разделения обусловлена различием энергии адсорбции, например на оксиде алюминия  [c.47]


Смотреть страницы где упоминается термин Циклоалканы энергия: [c.926]    [c.117]    [c.89]    [c.1793]    [c.1793]    [c.1793]    [c.1837]    [c.373]    [c.77]    [c.116]    [c.159]    [c.162]    [c.300]    [c.163]   
Органическая химия Том1 (2004) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Циклоалканы



© 2025 chem21.info Реклама на сайте