Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные энергия образования

    При растворении реагента А в растворителе 2 происходит физикохимический процесс взаимодействия молекул растворителя с молекулами А с образованием сольватов различной степени сольватации (см. П9). Иногда образуются комплексные химические соединения. В растворах электролитов растворяющееся вещество полностью или частично распадается на ионы, энергия гидратации которых соизмерима с энергией химических реакций. Если при растворении не образуется химических соединений растворенного вещества с растворителем, процесс растворения одного моля к ь т молях 2 можно записать в виде уравнения [c.591]


    Под процессом сольватации будем понимать процесс перехода иона из вакуума в раствор. Этот процесс аналогичен процессу растворения газа в жидкости. Под энергией сольватации понимают изменение энергии Гиббса в процессе сольватации. Одно из наиболее простых, хотя и не очень точных выражений для энергии сольватации, дает формула Борна. Представим ион в виде сферической, равномерно заряженной оболочки радиуса г. Энергия образования этого иона в вакууме [c.227]

    Наконец, из табл. 4 видно, что энергии образования метил- и этил-ионов из олефииов намного выше, чем энергия образования вторичных (и третичных) форм высших ионов. Таким образом, энергетически легко объяснимо правило незначительного образования нри каталитическом крекинге ионных осколков, имеющих меньше 3 атомов углерода. Общее правило о предпочтительном образовании осколков от Сд и больше при каталитическом крекинге основано на отдельных правилах, применимых отдельно к образованию как олефиновых, так и ионных осколков при крекинге иона карбония. [c.126]

    В практических условиях большее значение имеет взаимодействие компонентов при совместном разряде ионов металлов, образующих сплавы типа твердых растворов или химических соединений. В данном случае облегчение процесса, обусловленное уменьшением парциальной мольной энергии образования (ДФ) компонентов, сохраняется в течение всего процесса электролиза. Примером является электроосаждение сплавов олово — никель, олово — сурьма, медь — цинк, медь — олово и др. [c.434]

    Проинтегрировав выражение (XVI, 39), получим энергию образования ионной атмосферы  [c.410]

    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]


    В таких многоэлектронных атомах, как атомы лантаноидов, различия в энергии связи на близких оболочках малы и, в частности, переходы с 4/-уровня на 5с/- вполне возможны. С этим обычно связывают и степень окисления +3, характерную для лантаноидов. Возможность перехода зависит, впрочем и от других факторов энергии гидратации иона, энергии образования продукта восстановления и т. д. [c.207]

    При образовании положительного иона (карбония) изменяется как Е 3 , причем оба члена этого выражения возрастают с увеличением числа атомов Н, связанных с атомом углерода. Количественные оценки разности энергии образования этих карбоний-ионов, сделанные по масс-спектрометрическим данным (по наименьшему потенциалу появления иона, образовавшегося при диссоциации молекулы) [4) дают  [c.66]

    Природа рекомбинационной люминесценции более сложная. Этот вид люминесценции наблюдается при рекомбинации (воссоединении) радикалов или ионов с образованием возбужденных молекул, он может возникать у различных газов и особенно характерен для кристаллофосфоров. При возбуждении (например, сульфидных кристаллофосфоров) происходит разделение их центра свечения на две противоположно заряженные части. При последующей встрече этих частей происходит их рекомбинация с выделением энергии, которая приводит в возбужденное состояние центр свечения. Последний переходит в невозбужденное состояние с излучением кванта люминесценции. [c.89]

    Данные о прочности связей между атомами в молекулах органических веществ, о свободных радикалах, ионах карбония, энергии активации, свободной энергии образования, химизме и механизме термического крекинга дают ценные материалы для понимания процессов, происходящих при коксовании, и для изучения эксплуатационных свойств нефтяного кокса. [c.46]

    Диэлектрические материалы поляризуются также и в результате радиоактивного облучения. Для горных пород это имеет важное практическое значение, поскольку в геохимии известны сотни радиоактивных изотопов с периодами полураспада, изменяющимися в очень широких пределах. Например, при облучении диэлектрических сред пучком электронов энергия частиц может быть такой, что они будут проходить через материал (проникающая радиация), либо такой, что частицы будут поглощаться породой (непроникающая радиация). Проникающая радиация вызывает накопление носителей зарядов вследствие захвата заряженных частиц, пришедших извне (электронов, ионов) и образования заряженных частиц в период облучения (например частицами). В горных породах электрические объемные заряды могут накапливаться вблизи границы раздела радиоактивной и нерадиоактивной пород с высоким удельным электрическим сопротивлением, [c.133]

    Выделение и поглощение тепловой энергии объясняется разрывом связей в растворяемом веществе (распад на ионы) и образованием новых связей между ионами и молекулами растворителя (процесс сольватации). Разрыв связей требует затраты энергии, а при образовании связей энергия выделяется. Алгебраическая сумма поглощаемой и выделяемой энергии дает суммарный тепловой эффект растворения. [c.120]

    Положим, что ионная реакция протекает в полярном растворителе (е > 30) прн концентрациях, исключающих ассоциацию ионов. Энергию Гиббса образования активированного комплекса (не следует смешивать с энергией активации в уравнении Аррениуса) можно представить как сумму отдельных вкладов  [c.261]

    Первая возможность отпадает, так как существует очень малая вероятность одновременных соударений большого числа ионных пар (примерно 10) в одном и том же месте. Во втором случае всегда необходимы два соударения, что во много раз вероятнее. Отсюда вытекает вывод, что большие зародыши растут за счет малых или за счет растворенного вещества. Этот процесс подобен изотермической дистилляции маленьких капель. В принципе невозможно образование центра кристаллизации в результате соударения двух частиц, так как энергия при этом должна складываться из энергии образования и относительной кинетической энергии обеих соударяющихся частиц, т. е. значение энергии больше, чем нужно для образования связей, поэтому зародыш тотчас же распадается. Зародыш кристалла может образоваться, если избыточная энергия свое- [c.199]

    Изменение энергии при переходе атома в междуузлие в значительной степени зависит от строения кристаллической решетки и от свойств этого атома. При высокой энергии перехода иона в междуузлие дефекты по Френкелю не образуются в заметных количествах. Если в решетке имеются крупные пустоты-междуузлия, то энергия образования таких дефектов ниже и они встречаются чаще. Кроме того, дефекты по Френкелю часто обнаруживаются у кристаллов, ионы которых имеют сильную поляризуемость, и редко наблюдаются у оксидов и ковалентных веществ. [c.168]

    Метод ВС позволяет понять способность атомов к образованию определенного числа ковалентных связей, объясняет направленность ковалентной связи, дает удовлетворительное описание структуры и свойств большого числа молекул. Однако в ряде случаев метод ВС не может объяснить природу образующихся химических связей или приводит к неверным заключениям о свойствах молекул. Так, согласно методу ВС, все ковалентные связи осуществляются общей парой электронов. Между тем, еще в конце XIX века было установлено существование довольно прочного молекулярного иона водорода энергия разрыва связи составляет здесь 256 кДж/моль. Однако никакой электронной пары в этом случае образоваться не может, поскольку в состав иона Hj входит всего один электрон. Таким образом, метод ВС не дает удовлетворительного объяснения существованию иона. Далее, образование молекулы кислорода О2 описывается методом ВС как результат создания двух общих электронных пар. Согласно такому описанию, молекула О2 не содержит неспаренных электронов. Однако магнитные свойства кислорода указывают на то, что в молекуле О2 имеются два неспаренных электрона. [c.105]


    Если же эта реакция протекает в водной среде, то при этом возникает дополнительный выигрыш энергии, связанный с высокой энергией образования гидратированных фторид-ионов. Так, если взять сумму энтальпий трех последовательных стадий образования из молекул Hab гидратированных ионов Hai и сопоставить эти величины для фтора и хлора, получим  [c.146]

    Рассмотрим роль гидратации в процессе растворения ионногО кристалла. Энергию связи ионов в кристалле характеризуют величиной энергии кристаллической решетки, которая представляет собой энергию образования кристаллической решетки из идеальных ионных газов. [c.147]

    Для ртутного катода, заряженного отрицательно при ионной обкладке, образованной катионами, емкость составляет 18 мкф/см . При анионной обкладке значение емкости приблизительно в два раза больше. Известно, что ионы в растворе сольватированы. Если гидратная оболочка ионов при приближении к поверхности электрода не подвергалась бы деформации, то расстояние между центром иона и поверхностью металла равнялось бы сумме толщины гидратной оболочки и радиуса иона. В действительности вблизи поверхности происходит деформация гидратной оболочки. Значительно легче и больше деформируется гидратная оболочка анионов, у которых энергия гидратации меньше, чем у катионов. Поэтому величина емкости при анионной обкладке двойного слоя больше, чем при катионной. [c.344]

    Можно рассчитать энергию образования соединения с одним, двумя, тремя и большим числом ионов. [c.236]

    Пользуясь методом термодинамических циклов, используя теоретически и экспериментально установленные зависимости между энергией кристаллической решетки и свойствами ионов в качестве основы расчетов, а также энергетические характеристики атомов и ионов, А. Ф. Капустин-ский и К. Б. Яцимирский разработали единый прием энергетической характеристики ряда процессов образования комплексных ионов, и в частности таких важных величин, как энергий образования комплексных ионов в вакууме, протонного сродства, энергии гидратации ионов и т. д [c.159]

    Рассмотрим соотношения, наблюдаемые в молекуле МХ, если р — и п=. Как видно из данных таблицы, энергия образования второй связи составляет около 50% от энергии образования первой. Эти величины, характеризуюш,ие прочность первой и второй связей, оказываются сравнимыми. Энергия образования комплекса с тремя аддендами меньше, а с четырьмя гораздо меньше, чем соответствующее значение для комплекса типа МХГ, Поэтому наиболее обычными для однозарядных ионов металла являются комплексы типа МХГ. [c.237]

    Энергия образования третьей связи в комплексе МХз" составляет 0,76, т. е. по величине эта связь близка к некомплексной связи в МХ. Так как величины т для ионов МХГ и МХ4 близки, то согласно воззрениям Косселя и Магнуса образование [c.237]

    Помимо энергии образования ионов, следует учесть энергию электростатического притяжения ионов и энергию их отталки- [c.465]

    Чтобы подсчитать энергию образования ионного тройника, следует рассмотреть картину присоединения иона к ионному двойнику, т. е. к агрегату, состоящему из положительного и отрицательного ионов. Представим, что имеется ионный двойник, в котором положительный и отрицательный Рис. 31. Схема образо- ионы находятся на расстоянии а (рис. 31). вания ионного тройника. приближении к ионному двойнику поло- [c.120]

    Концентрация дефектов по Френкелю определяется энергией образования вакансии и иона в междуузлии и температурой по уравнению [c.168]

    Эта смесь может быть описана также моделью упорядоченного распределения ионов. Энергия образования криолита из NaF и AIF3 обусловлена изменением взаимодействия со второй координационной сферой, т. е. изменением катион-катионного отталкивания и поляризации ионов F . В этом случае возникает предпочтительное распределение, в котором ионы во второй координационной сфере окружены преимущественно ионами Na+. Малая степень разупорядоченности в расположении Д]з+—psja+ отвечает малой степени диссоциации криолитного комплекса. Ситуация аналогична распределению в сплавах с высокой степенью упорядоченности. Число ионов F", окружающих ионы А1 +, в этих расчетах не учитывается. [c.278]

    Со(ХНз)бНС02] , так как только в этом случае устраняется влияние окружающих ионов и молекул растворителя на устойчивость данного комплексного иона. Энергия образования газообразного комплексного иона может быть вычислена из уравнения (3). [c.130]

    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]

    Примечание В( личины энергий образования пириичных, вторичных и третичных ионов карбония иэ к-гексана и 2-метплпентана, могут быть использованы для всех высших парафинов, кроме сильно разветвленных структур с четвертичными атомами углерода. [c.123]

    В процессе растворения в результате притяжения происходит сближение И0НС1В с соседними молекулами растворителя, причем потенциальная энергия их уменьшается и выделяется теплота. Растворение сопровождается сжатием, которое можно рассматривать как уплотнение растворителя вокруг ионов и образование около каждого иона слоя более тесно связанных с ионом молекул растворителя Этот процесс называется сольватацией. [c.417]

    Эти различия можно отнести за счет небольших различий в энергиях активации если ехр = 20 при 550° С, то АЕ = = 3,5 ккял/мэль (14,6 10 Дж/моль), что гораздо меньше разности межцу энергиями образования третичного и первичного карбоний-ионов (разд. 1У.1), оцененной в 21 ккал/моль (87,8 10 Дж/моль). В основе этих расчетов лежит гипотеза, согласно которой отщепление гидрид-иона от парафина является стадией, лимитирующей скорость этой последовательности реакций. [c.128]

    Процессы деметилирования являются частным случаем процессов парофазной гидрогенизации и гидрокрекинга, но их химические цели — отщепление метильных заместителей без затрагивания ароматических ядер — заставляют проводить такие превращения в жестких условиях, что накладывает на них некоторые специфические особенности. В самом деле, ионное отщепление метильных заместителей энергетически почти невозможно из-за высокой энергии образования иона Н3С+ (см. гл. 2), следовательно в процессах деме-тилирования необходимо обеспечить исключительное протекание радикальных реакций. Последние усиливаются больше всего с ростом температуры так, что при 450 —500 °С начинают преобладать даже процессы деметилирования циклоалканов (см. стр. 228). С другой стороны, рост температуры сдвигает равновесие [c.327]

    Реакции переноса электрона. Реакции переноса электрона, являясь простейщим типом химического процесса, весьма распространены в фотохимии. Перенос электрона, происходящий при взаимодействии возбужденных молекул с донорами или акцепторами электрона, связан с тем, что при возбуждении молекул уменьщаетсч их потенциал ионизации и возрастает сродство к электрону. Такое взаимодействие возбужденных молекул с донорами и акцепторами электрона приводит к различным химическим и физическим процессам. В малополярных растворителях часто наблюдается образование возбужденных комплексов переноса заряда — эксиплексов. В полярных растворителях, где сольватация понижает энергию эксиплексов, реакция их образования становится необратимой и образуются иоп-радикальпые пары и свободные ион-радикалы. Образование эксиплексов и ион-радикалов может быть представлено следующей схемой  [c.176]

    Д = Д , + Д 2 + Дг З-В качестве другого примера применения закона Гесса рассмотрим энтальпию образования кристаллической рещетки ЫаС1 — ДЯ(ЫаС1 р .. ) из свободных газофазных ионов (энергии кристаллической решетки). [c.45]

    Под электролитом понимают вещество, молекулы которого в растворе способны распадаты я на ионы. Это происходит обычно под влиянием молекул растворителя. Электролиты подразделяют на сильные и слабые. Сильные электролиты практически нацело распадаются в растворах на ионы. В случае силе ных электролитов молекулы растворителя зачастую образуют настолько прочные комплексы с заряженными частицами, что энергия образования этих комплексов значительно превосходит энергию связей внутримолекулярного взаимодействия в исходных молекулах. Образование комплексов ион-молекулы растворителя — следствие процесса сольватации. Примером сильных электролитов могут служить азотная кислота, хлорид натрия и т.д. В случае слабых электроли- [c.226]

    При электроосаждении сплава возможно как повышение скорости разряда ионов, т. е. облегчение процесса образования сплава деполяризация), так и уменьшение скорости — затруднение разряда ионов сверхполяризация). Эффект деполяризации проявляется в результате взаимодействия компонентов сплава при образовании кристаллической решетки твердого раствора или химического соединения. В этом случае облегчение выделения сплава объясняется уменьшением парциальной молярной энергии образования компонентов осадка. Такое влияние отмечается при электроосаждении сплавов 8п — N1, 5п — РЬ, Си — 2п, Си — 5п и др. [c.52]

    Значительный вклад в свободную энергию активации некаталитических путей для той и другой реакций вносят энергетические затраты на образование термодинамически неустойчивых промежуточных соединений (ионов ОН" или, соответственно, НдО ). Так, Дженкс [29] полагает, что стандартные свободные энергии образования любой из этих промежуточных частиц равны 10 — 13 ккал/моль (42—54,6 кДж/моль) (при pH 7). В отличие от этого каталитические пути обеих реакций (будь это общекислотный в первой реакции или общеосновной катализ во второй) не требуют образования нестабильных промежуточных продуктов, поскольку участие общего кислотного [c.62]

    Значение ионов при образовании новой фазы в газовой среде легко доказать с помощью камеры Вильсона. Для этого камеру следует заполнить воздухом и паром исследуемой жидкости, пересыщение которого недостаточно для образования тумана в неионизированном газе, и вызвать в камере ионизацик> газа, например, путем облучения частицами высоких энергий (продуктами распада радиоактивных элементов, космическими лучами). В таких условиях в камере можно наблюдать дорожки из тумана, соответствующие пути частиц. Причиной образования таких дорожек является образование ионов в результате столкновения частиц высоких энергий с молекулами газа и конденсация на этих ионах паров. [c.358]

    Рассмотрим определение теплового эффекта реакции образования 1 моль кристаллического хлорида натрия из свободных (газообразных) одноатомных ионов (энергия кристаллической решетки Na I). [c.73]


Смотреть страницы где упоминается термин Ионные энергия образования: [c.125]    [c.111]    [c.75]    [c.60]    [c.153]    [c.64]    [c.178]    [c.268]    [c.235]    [c.237]   
Электрохимия растворов издание второе (1966) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Закономерности изменения теплот и свободных энергий образования ионных соединений с возрастанием атомного номера

Ионная атмосфера энергия образования

Ионная пара, энергия образования

Ионные образование

Ионов образование

Ионы образование

Ионы энергия,

Ионы, энергия гидратации Йодистый водород, реакция образования

Классификация дефектов и ограничения ионной модели. . — Термодинамика точечных дефектов. Энергия образования дефектов

Образование ионов, обладающих кинетической энергией

Работа образования ионной атмосферы. Электростатическая энергия электролита

Свободная энергия, изменение при образовании ионных пар

Химическая энергия Термохимия. Термохимические расчеты. Энергетика образования ионных соединений. Энергетика протолитических реакций. Относительный характер понятий кислота и основание

Энергия ионов

Энергия образования

Энергия образования газообразного комплексного иона и энергия решетки солей металлов побочных групп периодической системы

Энергия образования ионной решетки

Энергия образования первичного сольватированного иона

Энергия также Тепловой эффект, Теплота, Энтальпия образования ионов



© 2025 chem21.info Реклама на сайте