Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пузыри непрерывный поток

    Хигби [227] усовершенствовал пленочную теорию, предложив модель массопередачи, согласно которой при обтекании газового пузыря набегающим потоком внешняя поверхность пленки приходит в соприкосновение со все новыми ненасыщенными участками потока. Поверхность как бы обновляется. Непрерывный процесс обновления Хигби заменил ступенчатым, назвав временной интервал между двумя последующими обновлениями временем обновления 1 . Для газового пузырька Хигби определил как время, в течение которого пузырек проходит расстояние, равное его диаметру. [c.173]


    В псевдоожиженном слое равновесная концентрация С может установиться лишь на поверхности частиц, расположенных у меж-фазовой границы (агрегат — поток ожижающего агента или газовый пузырь — непрерывная фаза). Внутри агрегата частиц можно предполагать застойную зону, куда (условно) не проникает ожижающий агент с рабочей концентрацией вещества С. По этой причине частицы внутри агрегата не принимают активного участия в массообмене (на их поверхности не устанавливается концентрация С ]. [c.283]

    Если в вертикальной трубе создается непрерывный поток пузырей в результате постоянной подачи воздуха в ее основание, то абсолютная скорость подъема их будет превышать скорость, с которой каждый отдельный пузырь поднимается в неподвижной жидкости. Конкретный случай системы такого рода изображен на рис. 9 (данные Грифита и Уэлса [31] и Ник-лина и др. [77]). Труба площадью поперечного сечения А заполнена водой, через которую непрерывно подается воздух с постоянным объемным расходом G. Характер движения пузырей в нижней части трубы зависит от условий их ввода в трубу, но несколько выше устанавливается характер движения, известный как поршневой режим . [c.44]

    Пузыри в капельной жидкости образуются весьма просто, если воздух непрерывно подавать через отверстие, расположенное в массе жидкости. Простой эксперимент показывает, что в этих условиях образуется устойчивая цепочка пузырей, если расход газа поддерживается постоянным. Поведение такого рода систем было изучено достаточно широко, поэтому логично было поставить эксперимент с подобными им системами, вводя непрерывно поток воздуха в псевдоожиженный слой через расположенное в нем единичное отверстие [41]. При этом необходимо было (точно так же, как это было сделано при изучении подъема единичных пузырей) привести слой в состояние минимального исевдоожижения путем подачи в аппарат отдельного потока воздуха (с постоянной скоростью), чтобы придать слою свойства капельной жидкости. Для возможности анализа результатов этих опытов необходимо рассмотреть теоретические и экспериментальные предпосылки работы по изучению образования пузырей в капельных л<идкостях. [c.68]

    Скорость массообмена лимитируется проникновением вещества в частицу диффузионное сопротивление пограничной пленки около частицы пренебрежимо мало В1, > 10 ). Следовательно, для отдельно взятой частицы полное диффузионное сопротивление будет определяться выражением (62), а его абсолютная величина близка к 1/р. При этом на поверхности частицы концентрация Ср вещества (в условиях опыта — влаги) равновесна его концентрации в потоке агента V. В псевдоожиженном слое равновесная концентрация Ср может установиться лишь на поверхности частиц, расположенных у межфазной границы (газовый пузырь — непрерывная фаза). Внутри агрегата частиц можно предполагать застойную зону, куда условно не проникает ожижающий агент с рабочей концентрацией вещества У. По этой причине частицы внутри агрегата не принимают активного участия в массообмене (на их поверхности не устанавливается концентрация Ср). Однако агрегаты в псевдоожиженном слое постоянно разрушаются и возникают вновь. Через какой-то промежуток времени частицы, находившиеся внутри агрегата, окажутся в контакте с потоком ожижающего агента, на их поверхности установится концентрация Ср и начнется диффузия вещества внутрь частицы. Скорость массообмена будет при этом определяться долей частиц в слое, находящихся единовременно в активном контакте с газом, а следовательно, и частотой распада агрегатов. Так как при увеличении скорости ожижающего агента Ке) распад и возникновение новых агрегатов происходят более интенсивно, то скорость массообмена в псевдоожиженном слое должна возрастать при увеличении Ке. При достаточно высоких значениях Ке, когда каждая частица будет находиться в зоне высокого потенциала, можно ожидать замедления роста В при увеличении Ке и асимптотического его приближения к постоянным значениям, соответствующим величинам С. Такого же эффекта (приближение эффективных величин В к истинным, соответствующим чисто внутренней задаче) следует ожидать при переходе к более крупным частицам, условия обтекания которых более благоприятны (меньше поперечная неравномерность). Результаты опытов с частицами силикагеля размером 5,13 мм подтверждают это положение. [c.175]


    Устройства для удаления пара из масла. Растворимость фреона в масле улучшается при повышении давления и понижении температуры, что наблюдается после каждой остановки компрессора. Последующий пуск сопровождается выделением пара, масло вспенивается, в насосе образуются пузыри, способные нарушить непрерывность потока. Под действием центробежной силы жидкость отбрасывается к периферии, а пар собирается у оси вращения. Для его удаления используют специальные так называемые дегазационные устройства. [c.144]

    Благодаря тесному взаимодействию ожижающего агента и твердых частиц во всех точках псевдоожиженного слоя характеристики их движения связаны между собой. При однородном псевдо-ожижении система обычно интенсивно перемешивается, тогда как в неоднородном слое поток ожижающего агента через непрерывную фазу является преимущественно потенциальным, и перемешивание осуществляется в основном за счет барботажа пузырей. Обзор исследований по перемешиванию в псевдоожиженном слое за последние годы выполнен Ганном . [c.63]

    Механизм движения газа в системах газ — твердые частицы весьма сложен из-за тенденции к образованию пузырей. На долю последних приходится значительная часть газового потока, и при движении через слой происходит непрерывный обмен газа между пузырями и непрерывной фазой -80. При отсутствии пузырей интерпретация экспериментальных данных по тепло- и массообмену между газом и твердыми частицами возможна только с учетом значительного обратного перемешивания ei. При этом роль последнего возрастает по мере уменьшения скорости газа. [c.64]

    Газ движется через проницаемую непрерывную фазу ламинарно (или в соответствии с законом Дарси) с относительной скоростью, достаточной для поддержания твердых частиц во взвешенном состоянии. Выше было показано, что пузыри вызывают перемещение самой непрерывной фазы, которое накладывается на движение газа. Пузыри представляют собой участки с очень высокой проницаемостью, распределенные в однородной среде, ограниченной проницаемостью, и их присутствие значительно видоизменяет газовый поток. Последний сходится по направлению ко дну пузыря, проходит через него, выходит через его крышу [c.157]

    Пузыри находятся в движении, так что поток не является установившимся относительно неподвижного наблюдателя (или стенок аппарата). Если скорость пузыря превышает скорость движения газа в просветах невозмущенной непрерывной фазы, то возникает интересное и важное явление. Поле давлений заставляет газ входить в пузырь через дно. Выйдя через его крышу, газ поступает в непрерывную фазу, быстро текущую вниз вдоль боковой поверхности пузыря газ увлекается ею к основанию пузыря и снизу снова входит в пего. В результате возникает сферический вихрь газа (концентричный пузырю), который поднимается вместе с пузырем как обособленное газовое образование (облако циркуляции). Наличие этого облака значительно изменяет время контакта газа и твердых частиц, являясь важной причиной проскока газа через слой. [c.157]

    Если пузырь неподвижен (это означает, что все твердые частицы также неподвижны), то двуокись азота должна двигаться по линии тока. Ее движение будет очень сходно с показанным на фото 1У-27, отличаясь только тем, что поток, поднимаясь вверх, изогнется, чтобы войти в основание пузыря, пройдет через него, выйдет (в идеальном случае) через крышу пузыря и далее симметрично завершит траекторию. (На практике существует экспериментальная трудность внутри пузыря газ-трасер теряет поддержку твердых частиц и начинает рассеиваться, поэтому из пузыря в непрерывную фазу входит уже не тонкая струя.) Как было показано поле давлений, а значит и поле линий тока, [c.159]

    Степень превращения зависит главным образом от интенсивности обмена газом между пузырями и непрерывной фазой, интенсивность которого определяется диффузией и сквозным потоком между фазами. Теория позволяет учесть оба эти механизма пере- [c.172]

    В реальных условиях сопротивление диффузии должно существовать как в непрерывной фазе, включая облако, так и внутри пузыря. Кроме того, одновременно с диффузией перенос происходит за счет сквозного потока между пузырем и непрерывной фазой. Излагаемая ниже теория представляет собой попытку учесть взаимодействие указанных факторов, а также концепции других авторов, представленные в пунктах а—г. [c.201]

    Опыты показали что смешение происходит внутри основной части каждого пузыря, но линии тока из пузыря ведут в непрерывную фазу. В последующей теории такая схема потока дополнена допущением, что газ р облаке циркуляции движется вдоль линии тока, пока он не достигнет кильватерной зоны под газовой пробкой. Здесь происходит полное смешение с газом в непрерывной фазе, расположенной на одном уровне с кильватерной зоной, благодаря быстрому движению пленки твердых частиц в этой области. С этим предположением согласуются опыты в которых не удалось обнаружить радиального перепада концентраций трасера, введенного в поршневой псевдоожиженный слой. Следовательно, газ, поступающий через дно газовой пробки, должен иметь концентрацию реагента Ср, равную концентрации, в непрерывной фазе вокруг пробки. Отсюда скорость обмена реагирующим веществом составит [c.201]


    Объемный поток между пробкой и непрерывной фазой может быть определен без приведенных выше расчетов по методике, разработанной для слоя с непрерывным барботажем пузырей. [c.202]

    Недавно для описания перемешивания газа и твердых частиц рядом авторов была предложена модель противотока с обратным перемешиванием,постулирующая,.что движение непрерывной фазы вызывается перемещением пузырей. В частности, принимают, что твердые частицы достигают поверхности слоя, находясь в гидродинамическом следе пузырей, и соответственно должен существовать их общий нисходящий поток. Поскольку скорость нисходящего потока непрерывной фазы может превышать спорость газа в просветах между твердыми частицами (обычно вычисляемую как то газ, увлекаемый [c.253]

    Недавно несколько исследователей независимо друг от друга предложили модель, получившую название модели противотока с обратным перемешиванием. В основе модели лежит представление о том, что за счет подъема газовых пузырей часть твердых частиц перемещается вверх, при этом соответственно возникает нисходящий поток остального зернистого материала в псевдоожиженном слое. Скорость нисходящего движения непрерывной фазы может быть достаточно велика, чтобы вызвать нисходящий [c.267]

    Рассмотрим перемешивание газа при установившемся режиме работы, когда пузыри вводятся в основание слоя отдельно с концентрацией газа-трасера с д. По мере подъема газ в пузырях обменивается трасером с восходящим потоком газа в непрерывной фазе (рис. УП-13). Принимается, что газ в непрерывной фазе и в пузырях движется в режиме идеального вытеснения без продольного перемешивания. [c.268]

    Авторы не затрагивают перемешивания твердых частиц, хотя оно может играть существенную роль, особенно в случае теплонапряженных химических реакций. Поскольку происходит коалесценция пузырей, межфазный коэффициент обмена теоретически рассчитывают (см. гл. V) последовательно для каждого участка в слое, внутри которого высота газовой пробки постоянна. Одновременно сделано важное допущение в месте коалесценции газовых пробок потоки газа в дискретной и непрерывной фазах полностью смешиваются. Таким образом, весь реактор рассматривается как бы составленным из нескольких последовательно соединенных реакторов (рис. VII-17). В результате такого допущения режим в значительной мере приближается к стержневому (идеальное вытеснение) и конверсия в реакторе повышается. Однако остается неясным, каким образом происходит смешение газа из разных фаз при коалесценции двух газовых пробок. [c.275]

    Для определения количества твердых частиц, вовлеченных в движение газовыми пузырями, был предложен еще один метод Согласно модели противотока с обратным перемешиванием, существует критическое значение скорости газового потока, необходимее для его обратного перемешивания. За критическую принимают такую скорость газа, при которой непрерывная фаза движется вниз между пузырями со скоростью газа в просветах между частицами непрерывной фазы. [c.281]

    Отношение объемов непрерывной фазы, занятой облаком циркуляции, и пузыря представлено величиной И аь — ) Последняя аналогична в модели противотока с обратным перемешиванием, поскольку речь идет о потоке газа, связанного с пузырем. Таким образом  [c.288]

    В псевдоожиженном слое существуют благоприятные условия для тепло-и массообмена между твердыми частицами и ожижающим агентом происходит быстрое перемешивание твердых частиц. При атом коэффициенты теплообмена с наружной поверхностью аппарата весьма высоки, поэтому аппараты с псевдоожиженным слоем используют как теплообменники и хими-ческие реакторы, особенно в тех случаях, когда требуется тонкое регулирование температуры и когда системе нужно сообщать (или отеодить ив нее) большие количества тепла. В связи с атим необходимо выяснить характер движения ожижающего агента и твердых частиц. По внешнему виду поток ожижающего агента в псевдоожиженном слое кажется турбулентным. Однако при скоростях, близких к скорости начала псевдоожижения, и в непрерывной фазе неоднородного слоя с барботажем пузырей движение потока обычно является ламинарным этот режим нарушается только в сильно расширенном Однородном слое и при использовании крупных твердых частиц. [c.38]

    Рассматривается нестационарный процесс массообмена капли (или пузыря) с потоком несжимаемой жидкости при большйх числах Пекле. Поле течения, в общем случае нестационарное, предполагается известшзтм, задача считается двумерной (плоской или осесимметричной). Вдали от капли задана концентрация растворенного компонента, а также ее распределение вне и внутри капли в начальный момент времени. Массоперенос может при этом лимитироваться сопротивлением непрерывной или дисперсной фазы либо проходить в условиях, когда эти сопротивления соизмеримы. [c.275]

    Ударная коррозия возникает в заполненном проточной водой трубном пространстве охлаждаемых морской водой конденсаторов. Она происходит на участках поверхности труб, где лопаются большие пузыри, образовавшиеся в турбулентной йоде при этом возникают божшие язвины, имеющие форму лошадиной подковы. В точках разрушения пузырей происходит значительная деполяризация анодной и катодной реакций вследствие удаления продуктов реакции и обильного подвода кислорода. Разъедание также усиливается в результате столкновения непрерывного потока пузырей с окисной пленкой. [c.201]

    Эта конструкция имеет ряд преимуществ перед описанными ранее, заключающихся в том, что в системе и на поверхности деталей нет воздушных пузырей. Это достигается тем, что в системе нет непрерывной циркуляции лака и основная его масса находится все время в спокойном состоянии, так как перекачивание лака из нижнего бака в верхний производится только в нерабочее время. Кроме того, достоинством машины является возможность работы на малых скоростях. При этом не требуется специальных тормозящих и ускоряющих рольгангов и уменьшается холостой ход машины, так как при скорости 20 м1мин и ручной загрузке щитов их можно подавать к машине почти непрерывным потоком. При этом уменьшается количество лака, не попадающее на щит и подлежащее циркуляции, а следовательно, снижается нарастание вязкости лака внутри циркулирующей системы. [c.108]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    При дальнейшем возрастании скорости газового потока за переделы точки В нарушается непрерывное движение порпщей твердых частиц вслед за газовыми пузырями твердый материал начинает выноситься вверх из слоя, пока небольшое оставшееся его количество не образует газовзвёси, равномерно раснределен-ной по высоте аппарата. Это состояние соответствует точке Н на [c.19]

    Измерения сопротивления потока показали , что стенки полости менее устойчивы, чем ее крыша, Если скорость газа через крышу полости будет недостаточно высока и единичные частицы начнут падать вниз, то частицы над ними определенно потеряют устойчивость и произойдет обрушение крыши. Такое поршнеобразное обрушение вызовет уменьшение объема полости, что приведет к восстановлению скорости на поверхности раздела, несмотря на отделение полости от струи газа из отверстия решетки. Частицы, обтекающие полость и движущиеся к ее основанию, также стремятся сжать газ и, замещая его, вытеснить через крышу полости. Это легко может быть продемонстрировано, если внести пузырь в слой непсевдоожиженного зернистого материала по мере подъема пузыря наблюдается сокращение его объема. В псевдоожиженном слое, где частицы в непрерывной фазе, входящие в основание полости, сами пронизываются потоком со скоростью сокращения объема пузыря не происходит из пузыря уходит то же количество газа. [c.29]

    Соотношение (IV,4) предполагает, что скорость пузыря дополнительно возрастает под действием восходящего потока непрерывной фазы (например, в центральной зоне) со средней скоростыо дискретной фазы . Скудные литературные данные недостаточны для однозначного подтверждения соотношения (1У-4). Последнее все же является, вероятно, самым полезным из всех известных до сих пор уравнений, хотя в работе Дэвидсона и Харрисона рассмотрены и некоторые другие уравнения. [c.143]

    Изучение поршневого режима типа А имеет большое значение для понимания процесса псевдоожижения. В слое большого размера трудно измерить или рассчитать диаметр пузырей вследствие их коалесценции, а также перемешивания газа в непрерывной фазе. Кроме того, характер потоков около лобовой части пузыря в обычном слое зависит от гидродинамической обстановки в кильватерной зоне непосредственно под пузырем последняя, как известно, с трудом поддается исследованию. Псевдоожижен- ный слой в поршневом ре- [c.172]

    Прежде чем перейти к рассмотрению последних экспериментальных работ, полезно остановиться на некоторых теоретических моделях, предложенных для описания диффузии в псевдоожиженных слоях. Две такие модели уже упоминались. Перемешивание твердых частиц по одной из них объяснялось наличием восходящего потока твердых частиц, обусловленного подъемом пузырей а по другой — диффузионным эффектом безотносительно к его природе. Эти модели в некоторой мере объясняют результаты опытов по перемешиванию твердых частиц, полученные Джил-лилендом с сотр. Необходимо отметить, что модели, основанные на прямотоке газа в непрерывной и дискретной фазах, не могут объяснить экспернментально установленного обратного перемешивания, если онн игнорируют продольное перемешивание в одной или обеих фазах. [c.266]

    Будем понимать под скоростью обмена твердыми частицами Кв объем частиц в непрерывной фазе, обмениваемый за единицу времени в единице объема слоя между двумя потоками твердых частиц — поднимающимися (с пузырями в их кильваторе) и опускат ющимйся (в остальном слое). В целях упрощения будем считать скорость Кд постоянной ПО высоте слоя. [c.268]

    Большое внимание уделено в литературе проскоку газа с пузырями, характерными для неоднородного псевдоожиженного слоя. Если бы между пузырями и непрерывной фазой отсутствовал обмен тазом, то проскок (байнас) был бы полным . С другой стороны, если бы обмен был бесконечно быстрым, то проскока вообще не наблюдалось бы. В реальных условиях обмен обязательно суи -ствует за счет диффузии и, возможно, также конвекции, обусловленной либо сквозным потоком газа через пузырь, либо вихрями за поднимающимся пузырем. [c.289]


Смотреть страницы где упоминается термин Пузыри непрерывный поток : [c.254]    [c.579]    [c.169]    [c.254]    [c.579]    [c.90]    [c.200]    [c.200]    [c.266]    [c.267]    [c.268]   
Псевдоожижение твёрдых частиц (1965) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте