Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость диффузии переноса

    I. Электродные процессы, контролируемые скоростью диффузии. Перенос электронов происходит быстро, следовательно, процесс обратим  [c.29]

    Наблюдаемая скорость этого превращения является результатом как переноса массы (т. е. диффузии реагента А из газовой фазы и диффузией реагента В из общей массы жидкости к зоне реакции), так и самой химической реакции. Если скорость химической реакции велика, то зона реакции находится в пределах пограничной пленки со стороны жидкости и скорость превращения лимитируется скоростью диффузии реагентов А и В к этой зоне. [c.251]


    В потоке, движущемся со скоростью V, перенос осуществляется конвективной диффузией или конвективной теплопроводностью. Общее уравнение конвективного переноса имеет вид  [c.169]

    Для повышения точности измерения скоростей пленочного переноса был использован примененный в работе [330] прием, состоящий в снижении коэффициента диффузии пара О (и, следовательно, повышении относительного вклада У в общий поток массы) за счет увеличения давления газа, заполняющего пространство капилляра между менисками. [c.112]

    В определенных геометрических и гидравлических условиях можно рассчитать скорость переноса массы с помощью диффузии. Если реакция протекает в области внешней диффузии, то ее скорость должна соответствовать рассчитанной скорости диффузии. Если скорость реакции много меньше этой величины — это значит, что реакция протекает в кинетической области. Очевидно, что скорость реакции не может превышать скорость диффузии. Если условия не позволяют точно рассчитать перенос массы, а эксперимент указывает на увеличение скорости реакции с увеличением скорости потока, то можно считать, что на скорость реакции влияет перенос вещества. Сильное влияние температуры свидетельствует о том, что процесс идет в кинетической области. [c.96]

    Молекулярно-кинетическая теория также позволяет делать предсказания относительно диффузии, вязкости и теплопроводности газов, т.е. так называемых транспортных свойств, проявляющихся в явлениях переноса. Каждое из этих явлений может условно рассматриваться как диффузия (перенос) некоторого. молекулярного свойства в направлении его градиента. При диффузии газа происходит перенос его массы от областей с высокими концентрациями к областям с низкими концентрациями, т.е. в направлении, обратном градиенту концентрации. Вязкость газов или жидкостей (иногда их обобщенно называют флюидами) обусловлена диффузией молекул из медленно движущихся слоев в быстро движущиеся слои флюида (и их торможением) и одновременной диффузией быстро движущихся молекул в медленно движущиеся слои (и их ускорением). При этом происходит перенос механического импульса в направлении, противоположном градиенту скорости движения флюида. Теплопроводность представляет собой результат проникновения молекул с большими скоростями беспорядочного движения в области с малыми скоростями беспорядочного движения молекул. Ее можно описывать как перенос кинетической энергии в направлении, противоположном градиенту температуры. Во всех трех случаях молекулярно-кинетическая теория позволяет установить коэффициент диффузии соответствующего свойства и дает наилучшие результаты при низких давлениях газа и высоких температурах. Именно эти условия лучше всего соответствуют возможности применения простого уравнения состояния идеального газа. [c.150]


    Если средняя длина свободного пробега молекул намного меньше диаметра поры, то молекулы диффундирующих веществ сталкиваются друг с другом гораздо чаще, чем со стенками поры, и последние не оказывают существенного влияния на скорость диффузии в пористом зерне. В этих условиях диффузия в порах протекает так же, как и в объеме неподвижной жидкости или газа, и скорость переноса вещества вдоль поры, отнесенная к единице ее поперечного сечения, определяется законом Фика  [c.151]

    Массо- и теплопередача в порах. Наиболее важное значение в процессах гетерогенного катализа имеет перенос вещества и тепла внутри пористой частицы катализатора. Перенос вещества в порах осуществляется исключительно путем молекулярной диффузии. Если диаметр поры значительно превышает среднюю длину свободного пробега, то молекулы диффундирующих веществ сталкиваются друг с другом гораздо чаще, чем со стенками поры и последние не оказывают существенного влияния на скорость диффузии в пористом зерне. В этих условиях диффузия в порах протекает так же, как в объеме неподвижной жидкости или газа и скорость переноса вещества вдоль поры, отнесенная к единице ее поперечного сечения, определяется законом Фика - [c.98]

    Химические реакции подразделяют па элементарные (одностадийные) и сложные. При элементарной реакции в системе протекает только один процесс и уравнение реакции раскрывает ее механизм. Больщинство реакций (в том числе почти все изучаемые в курсе общей и неорганической химии) являются сложными и представляют суммарный результат нескольких элементарных процессов обычная запись этих реакций, как правило, не отражает их реальный механизм. Стадиями реакций могут быть не только химические процессы, но и, например, переход вещества из об-ьема фазы к ее границе, на которой протекает реакция, или перенос продуктов взаимодействия от этой поверхности в объем. Скорость подобных процессов определяется скоростью диффузии. [c.214]

    При наличии гранул пористого катализатора реакция протекает на внешней поверхности и внутри самих гранул. Согласно квазигомогенной модели поры малы при сопоставлении с размером гранул и равномерно пронизывают ее. Реакция происходит,во всей грануле катализатора и активность характеризуется эффективной константой скорости, а перенос вещества — эффективным коэффициентом диффузии. Эта модель противоположна модели нереагирующего ядра с определенной зоной реакции, которая кажется целесообразнее и реальнее для большинства некаталитических реакций в системах газ—твердое вещество, описанных в главе ХП. [c.411]

    Если скорость реакции лимитируется скоростью переноса молекул реагирующих веществ к поверхности катализатора или продукта реакции в объем, то изменение таких факторов, как температура опыта или давление водорода, отразится на скорости реакции согласно соответствующим законам диффузии, но не законам процессов, протекающих на поверхности катализатора. Отсюда следует необходимость разграничения диффузионной и кинетической областей протекания реакции. В диффузионной области скорость каталитической реакции определяется скоростью проникновения исходных веществ к поверхности катализатора, в его поры, или скоростью диффузии продуктов реакции в объем. В кинетической области общая скорость реакции лимитируется одним из элементарных актов, происходящих а поверхности катализатора. [c.67]

    По своей физической сущности сушка является сложным диффузионным процессом, скорость которого определяется скоростью диффузии влаги из глубины высушиваемого материала в окружающую среду. Как будет показано ниже, удаление влаги при сушке сводится к перемещению тепла и вещества (влаги) внутри материала и их переносу с поверхности материала в окружащую среду. Таким образом, процесс сушки является сочетанием связанных друг с другом процессов тепло- и массообмена (влагообмена). [c.583]

    Растворимость металла в расплаве увеличивается с температурой и иногда достигает весьма больших значений. Взаимодействие продуктов в электролите между собой и с электролитом зависит от их растворимости в электролите, скорости диффузии, расстояния между электродами, конвективного переноса, (т. е. от температуры и плотности тока) и конструкции электролизера. [c.471]

    Следовательно, плотность тока на жидком катоде контролируется скоростью диффузии, а последняя — коэффициентом диффузии. Кроме того, на значении плотности тока благоприятно сказывается высокая концентрация ионов осаждаемого металла и минимальная толщина диффузионного слоя. Для ускорения процесса переноса в глубину катодного сплава последний в техническом электролизе обычно перемешивается либо с помощью специальной мешалки, либо путем протекания сплава через ванну. [c.142]


    Второй метод определения чисел переноса через мембраны основывается на использовании диффузионного потенциала. Диффузионный потенциал возникает, как известно, при соприкосновении двух растворов электролитов различной концентрации, вследствие разной скорости диффузии отдельных ионов разного знака заряда. При диффузии ионов электролита в сторону более разбавленного раствора, если катион обладает большей подвижностью по сравнению с анионом, то более разбавленный раствор приобретает положительный заряд. При большей относительной подвижности аниона более разбавленный раствор получает отрицательный заряд. Величина диффузионного потенциала зависит от соотношения подвижностей катиона и аниона. По Нернсту величина диффузионного потенциала и связана с подвижностью катиона и и аниона V следующим соотношением [c.210]

    Сравнивая выражения (1.50) и (1.42) и учитывая соотношение (1.28), можно видеть, что если в методе диффузии скорость процесса переноса обратно пропорциональна давлению газа-реагента, то в методе конвекции она прямо пропорциональна Рв(исх)- Поэтому диффузионный метод целесообразно осуществлять при низких давлениях газовой фазы, а метод конвекции — при повышенных. Разделительный эффект в методе конвекции в общем такой же, как и в методе потока, а вероятность загрязнения очищаемого вещества примесями, содержащимися в газе-реагенте, меньше. [c.30]

    К сожалению, это не распространяется на ректификацию под вакуумом (при давлениях ниже 10 Па) ввиду следующих причин. При понижении давления в колонне увеличивается скорость диффузии в паре, так как коэффициент диффузии в газах обратно пропорционален давлению. Это вызывает улучшение переноса примеси в паровой фазе. Отсюда следует, что, начиная с некоторого давления, скорость массообмена в ректификационной колонне будет лимитироваться диффузией в жидкой фазе и дальнейшее уменьшение давления не будет увеличивать скорость массо-обмена. Одновременно при понижении давления увеличивается скорость диффузии в паровой фазе вдоль оси колонны. В соответствии с этим вертикальный градиент концентрации в паровой фазе колонны падает и разделение смеси ухудшается. Далее, при понижении давления в колонне возрастает также линейная скорость движения пара, что приводит к резкому увеличению перепада давления между кубом и конденсатором колонны, вследствие чего в кубе не удается поддерживать низкое давление. В результате ректификация при давлении ниже (1—2)-10з Па обычно становится неэффективной. [c.101]

    Так как для жидкостей число Прандтля на три порядка больше, чем для газов, то при одинаковых числах Рейнольдса число Пекле для жидкостей в 1000 раз больше, чем для газов. Это означает, что благодаря малости коэффициента диффузии в жидкостях основная часть переноса вещества обязана конвекции. В газах скорость молекулярного переноса настолько велика, что конвективный перенос играет значительно меньшую роль, чем в жидкостях. [c.375]

    Вследствие того, что при мартенситном превращении происходят согласованные перемещения атомов железа на малые расстояния, которые не требуют диффузионного переноса, зародыши новой фазы образуются с большой скоростью. По этой причине зародыши мартенсита могут возникать и при таких низких температурах, при которых скорости диффузии ничтожно малы. Следствием большой скорости мартенситного превращения являются, как упоминалось выше, и то, что при закалке стали атомы углерода не успевают выделяться из твердого -у-раствора и концентрация углерода в образовавшемся а-железе превышает величину растворимости, иными словами, образуется пересыщенный раствор (мартенсит), т. е. фаза, не устойчивая по отношению к a-Fe и карбиду железа. [c.389]

    Опыт показывает, что серебряная пластинка заметно уменьшается, первый слой сульфида серебра незначительно увеличивается, а второй слой становится толще и увеличивается по массе в соответствии с убылью металлического серебра. Следо-пательно, продукт реакции — сульфид серебра — образуется только во втором слое, т.е. на поверхности серы. Это означает, что серебро переносится в виде ионов Ад+ через слой сульфида к поверхности серы, которая не переносится. Таким образом, процессом, лимитирующим (определяющим) скорость твердофазной реакции, является скорость диффузии ионов серебра через кристаллическую решетку сульфида серебра. Серебро диффундирует в виде ионов, а электронейтральность сохраняется за счет движения электронов в том же направлении (см. рис. 5.13, б). [c.275]

    Различия между объемной и поверхностной концентрациями могут быть обусловлены также замедленным подводом реагирующих веществ из объема раствора. Медленно могут отводиться продукты реакции. Подвод и отвод реагирующих веществ при электролизе осуществляется линейной или конвективной диффузией и электрической миграцией. Миграция — перенос ионов под действием электрического поля, что обеспечивает перенос электричества в растворе электролита. Скорость диффузии определяется природой реагирующих веществ и среды, температурой, величиной градиента концентрации (т. е. с — с). Скорость миграции, кроме того, зависит от объемного градиента потенциала, подвижностей ионов и в значительной мере от трудно учитываемых геометрических параметров электролизера, электродов и их взаимного расположения. В электрохимических исследованиях миграцию исключают добавлением избытка электролита, ионы которого не участвуют в электродных реакциях, но осуществляют перенос электричества через раствор. [c.302]

    Эта зависимость перестает быть линейной, когда электродный процесс контролируется одновременно кинетикой переноса электронов и скоростью диффузии. [c.60]

    Известно, что скорость доставки ионов к электроду определяется тремя факторами — скоростью диффузии, скоростью миграции (т. е. переноса ионов под действием электрического поля) и скоростью движения или перемешивания раствора электролита, т. е. скоростью конвективного переноса. Таким образом, [c.278]

    Рассмотренный случай описывает кинетику гетерогенного процесса, скорость которого ограничивается скоростью диффузии в одной из фаз —воде. Благодаря большим скоростям первых двух процессов (переноса ЫНз в газе и химической реакции) на границе вода — воздух установится равновесие между газом и тонким поверхностным слоем воды. [c.141]

    Другая причина — различие коэффициентов распределения растворенного вещества и растворителя в матрице мембраны, порождающее различие скоростей диффузии компонентов, если перенос осуществляется по диффузионному механизму. [c.219]

    Книга представляет собой краткое изложение теоретических основ и практического использования одного из современных высокоинформативных электрохимических методов — вольтамперометрии с линейной и треугольной разверткой потенциала. Рассматривается теория электродных процессов, контролируемых скоростями диффузии, переноса заряда, кинетикой предшествующих, последующих, каталитических химических реакций и последовательных электрохимических стадий. Детально разбираются критерии определения лимитирующей стадии электродного процесса. Подробно излагаются вопросы влияния адсорбции электроактивных веществ на форму и параметры вольтамперных кривых. Даны примеры исследования электродных процессов. Глава УП раздела первого издания Осциллографические полярографы написана канд. техн. наук Р. Ф. Салихджановой. В этой главе рассматриваются блок-схемы и принципы действия отдельных узлов и блоков осциллополярографов, а также дается описание серийных отечественных и зарубежных специализированных приборов, в которых одним из режимов работы является осциллографический. Таким прибором является, например, отечественный полярограф ППТ-1. [c.3]

    Заинтересовавшись диффузией — движением частиц среды, приводящим к переносу вещества и выравниванию концентраций, он начал изучать диффузию газов через мельчайшие поры или тонкие трубки. В 1829 г. ему удалось показать, что скорость диффузии газа обратно пропорциональна корню квадратному из его плотности (закон Грэхема). [c.128]

    Наибольшее применение пленочная теория нашла в случае, когда химическая реакция протекает в диффузионной области, т. е. для процессов с быстропротекаюшими реакциями. В этом случае зона реакции мала и приближенно может бьггь заменена фронтом. Фронт разделяет поток на две области. В одной иэ них находится экстрагент, а в другой -хемосорбент. Поскольку реакция протекает мгновенно, то на фронте реакции концентрации реагирующих веществ равны нулю. Скорость процесса переноса в данном случае лимитируется скоростью подвода вещества за счет диффузии. [c.265]

Рис. 1Х-3. Зависимость между степенью использования внутренней поверхности и скоростью диффузии и массопередачи (при гидрогенизации олефинов, реакциях переноса водорода и реакциях в жидкой фазе на таблетках размером 3 мм-, степень ис-пользованвя поверхности меньше 20% )1 Рис. 1Х-3. <a href="/info/25969">Зависимость между</a> <a href="/info/1009587">степенью использования внутренней поверхности</a> и <a href="/info/24177">скоростью диффузии</a> и массопередачи (при <a href="/info/413769">гидрогенизации олефинов</a>, <a href="/info/103072">реакциях переноса водорода</a> и реакциях в <a href="/info/30223">жидкой фазе</a> на <a href="/info/1482385">таблетках размером</a> 3 мм-, степень ис-пользованвя поверхности меньше 20% )1
    VI-1-3. Быстрые реакции. Когда реакция, в которую вступает растворенный газ, медленна (в том смысле, который обсуждался в предыдущем разделе), скорость диффузии непро-реагировавшего газа из пленки в массу жидкости практически такая же, как и скорость его диффузии в пленку от поверхности жидкости. Профиль концентрации А в пленке выражается прямой линией (пунктирная прямая ВС на рис. VI- ). Если реакция достаточно быстра, чтобы количество абсорбируемого газа, реагирующего в пленке, было сопоставимо с тем, что переносится в непрореагировавщем виде в массу [c.161]

    Если реакция проходит со значительным положительным тепловым эффектом, то при протекании ее во внешнедиффузионной области температура поверхности частиц значительно больше температуры газового потока. Разогрев поверхности частиц катализатора (распространяющийся в результате теплопроводности в их объем) происходит потому, что процессы переноса тепла и вещества подобны и движущие силы их (С — с) и (Гпов—Т об) пропорциональны. Разница температур газового потока и поверхности частиц катализатора, как и концентраций реагента в объеме и на поверхности, при протекании реакции во внешнедиффузионной области максимальна. На скорость реакции это явление влияния не оказывает, так как она определяется скоростью диффузии, но оно может сильно изменить селективность процеоса. [c.140]

    Влажность грунта можно характеризовать как степень заполнения его капилляров и пор водой. Поэтому в зависимости от влажности грунта преобладающее значение может иметь перенос кислорода либо в жидкой фазе (в сильновлажных грунтах), либо в газовой фазе внутрипорозного воздуха (в сухих и маловлажных грунтах). В л<идкой фазе диффузия кислорода значительно меньше, чем в газовой, поэтому с увеличением влажности грунтов диффузия кислорода через слой грунта будет уменьшаться. И. Д. Томашов и 10. И. Михайловский показали экспериментально, что увеличение влажности песка от О до 20% уменьшает скорость диффузии в 1000 раз. Е ще более чувствительны к снижению диффузии кислорода при увеличении влажности глинистые грунты. Кроме механического заполнения пор и капилляров жидкостью (как в песках) происходит набухание коллоидных частиц глинистых грунтов, что уменьшает проходное сечение открытых капилляров. В сухом состоянии пористость глины больше, чем песка. Торможение катодного процесса, таким образом, увеличивается с увеличением влажности почвы. При этом интенсивность этого торможения меняется с изменением влажности грунта (рис. 7, б). [c.42]

    Позже В. Нернстом была выдвинута теория, согласно которой скорость процесса на границе фаз (собственно растворение) значительно превосходит скорость диффузионного переноса вещества в объем раствора. Поэтому на границе фаз образуется насыщенный раствор и суммарная скорость процесса определяется молекулярной диффузией через слой раствора, прилегающий к поверхности твердого тела, в котором концентрация падает от Сн до Со- Концентрация в объеме раствора Со поддерживается однородной благодаря хорошему перемешиванию. Сопоставление уравнения (ХУП1.31) с уравнением Фика показывает, что к = = О/Д, где Д — путь диффузии. Таким образом, уравнение (ХУПГ.З ) может [c.376]

    Для 11ротекания твердофазных процессов особую роль играют содержание дефектов в кристаллах реагирующих веществ и скорость диффузии, обеспечивающей доступ реагентов друг к другу (т. е. скорость переноса веществ через слой продукта). Чтобы происходило взаимодействие дву.х газов, достаточно обеспечить их контакт (например, убрать перегородку между сосудами с газами) и реакция будет проходить со скоростью, лимитируемой скоростью диффузии или скоростью взаи.модействия молекул. Реакции в жидких фазах ускоряются при интенсивном перемешивании реагирующих веществ. Для осуществления реакции между кристаллическими веществами необходимо обеспечить доступ реагентов друг к другу и отвод продуктов. Реакция практически не проходит, если исходные вещества не способны перемещаться навстречу друг к другу через слой продуктов. Известны твердофазные реакции, в которых через слой продуктов диффундирует только один из реагентов. [c.274]


Смотреть страницы где упоминается термин Скорость диффузии переноса: [c.358]    [c.170]    [c.243]    [c.252]    [c.207]    [c.404]    [c.273]    [c.264]    [c.180]    [c.182]    [c.423]    [c.214]    [c.140]    [c.331]    [c.231]    [c.319]   
Явления переноса в водных растворах (1976) -- [ c.300 , c.315 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия скорость диффузии

Скорость диффузии



© 2025 chem21.info Реклама на сайте