Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гафния соли

    Гидратация и дегидратация. Все катализаторы этого класса имеют сильное сродство к воде. Главный представитель этй Ь класса—глинозем. Применяется также фосфорная кислота или ее кислые соли на носителях, подобных алюмосиликатному гелю и силикагелю с окислами тантала, циркония или гафния. [c.313]

    На основании многочисленных опытов по изучению растворимости в водных средах, изучению экстракционных свойств НСО по отношению к водным растворам солей редких металлов урана, тория, циркония, гафния, молибдена, тантала, ниобия, р. 3. элементов, палладия и других было ясно, что НСО как эффективные экстрагенты следует получать из нефтяных сульфидов, выкипающих в интервале 250—370°. [c.29]


    Тугоплавкие оксидные волокна получали путем пропитки исходных полимерных (гидратцеллюлозных ) нитей водными растворами солей гафния и циркония с их последующей термообработкой в окислительной атмосфере. [c.196]

    Кроме бериллия, электролизом расплавленных солей можно получать и другие тугоплавкие металлы (скандий, иттрий, титан, цирконий, гафний, торий, ванадий, ниобий, тантал, хром, молибден, вольфрам и рений). Все они являются элементами переходных групп периодической системы, для которых характерно образование катионов нескольких валентностей. [c.530]

    Метод экстракции металлов из водных растворов их солей органическими соединениями широко используют для отделения урана от осколков деления ядер урана, тория от других металлов, ему сопутствующих. Методом экстракции органическими соединениями отделяют гафний от циркония, ниобий от тантала, разделяют элементы редкоземельной группы. [c.574]

    Растворы солей кислородных кислот на холоду не оказывают действия на титан, цирконий и гафний. [c.82]

    При гидролизе растворов солей циркония и гафния возникают такие же равновесия, как и при гидролизе растворов титана  [c.282]

    Разделение экстракцией трибутилфосфатом. Цирконий и гафний практически не экстрагируются нейтральными экстрагентами из растворов солей, не содержащих кислоту или какой-либо другой высали- [c.339]

    М. Открытие К. Циглером и со-КАТАЛитические трудниками (Институт Макса СИСТЕМЫ Планка, ФРГ) нового класса НА ОСНОВЕ каталитических систем полиме-ЧЕТЫРЕХХЛОРИСТОГО ризации этилена при низком ТИТАНА давлении — комплексных металлорганических катализаторов И, 12]—положило начало многочисленным исследованиям в этом направлении во многих странах мира. Первыми каталитическими системами, которые нашли применение в производстве ПЭНД, были системы на основе солей титана и алкилов или галоген-алкилов алюминия. Соединения титана могли быть заменены соединениями других металлов переменной валентности ванадия, циркония, гафния, молибдена и др. Однако низкая стоимость и доступность соединений титана, достаточно высокая активность катализаторов на его основе при полимеризации этилена, возможность получения широкого ассортимента марок ПЭ [c.14]

    Из нитратных сред экстрагируются координационно-сольва-тированные сульфоксидами соли, поэтому экстракция большинства металлов из нитратных сред с небольшой и постоянной ионной силой не зависит от варьирования концентрации водородных ионов. При экстракции циркония, гафния с ростом концентрации водородных ионов происходит увеличение коэффициента распределения (Д), что связано, по-видимому, с плохой экстракцией присутствующих гидролизованных форм катионов данных м< .таллов при низких концентрациях водородных ионов. При извлечении из хлоридных растворов сульфоксиды, по аналогии с ТБФ, могут экстрагировать хлориды ме- аллов по двум механизмам в виде координационио-сольватированных соединений МеХ и комплексных анионов, входящий, в состав ионных ассоииатов. [c.39]


    Ки= 2,34-2,54 2а = 10,62—5,08 2х Так как с ростом температуры экстракция солей металлов (кроме циркония и гафния) уменьшается, были рассчитаны термодинамические функции (ДН, Д2, Д5) для реакций экстракций уранилнитрата, нитрата тория, хлорида теллура, рениевой кислоты и др. При экстрак[ши солен металлов по сольватному меха- [c.43]

    Соли титана, циркония и гафния, содержащие катион вследствие высокого заряда последнего в водных растворах сильно гидролизованы. Гидролиз сопровождается образованием оксосо-единений, иапример, оксосульфата титана > [c.367]

    Гидроксид гафния llf(0ll)4 образуется при глубоком высокотемпературном гидролизе солей ПГ , в также лри их взаимодействии со щелочами. Это ам()ютерное соединение. Большинство титанатов, цирконатов и гафнатов нерастворимы в воде, те же, которые хорошо растворимы, подвергаются практически полному гидролизу. [c.493]

    Соли простого состава не характерны для титана, циркония и гафния. Так, вместо простого сульфата титана (IV) из водного раствора кристаллизуется дигидроксид-сульфат титана TiS04(0H)2, (сульфат Ti(S04)2 можно-получить в неводной среде). Хлорид циркония(IV). подвергаясь гидролизу, осаждается в виде Zr bO-SHgO, или точнее [2г4(НгО) i6-(0H)8] l8  [c.234]

    Отношение к галогенным соединениям. На титан, цирконий и гафний по-разному действуют галоводороды, соли-галиды и кислотообразующие галиды. [c.80]

    Галиды титана, циркония и гафния, образованные металлами в различной степени окисления, обладают различными свойствами. Так, дигалиды являются типичными солями, т. е. образованы ионной связью. Для дигалидов характерны восстановительные свойства, которые усиливаются в ряду Т1Гг—2гГа—HfГ2. В связи с этим дигалиды титана, циркония и гафния крайне неустойчивы. Тригалиды титана, циркония и гафния хотя и являЮтся настоящими солями, но способны частично подвергаться гидролизу при растворении в воде. [c.83]

    Лантаноиды обычно встречаются в природе вместе, иногда совместно с иттрием, лантаном, скандием, торием, гафнием, цирконием, ниобием, танталом и др. Общее весовое содержание лантаноидов и лантана не превышает 0,01%. И все же можно указать целый ряд минералов, в которых встречаются и превалируют те или другие элементы — лантаноиды. Такими минералами являются силикаты и фосфаты церия и других элементов и соответствующие соли иттриевых земель (см. ниже). Первые называются цери-товыми минералами, а вторые иттриевыми. Всего известно до 180 минералов, содержащих лантаноиды. [c.276]

    Исходя из свойств некоторых органических соединений, применяемых в анализе, перспективными для качественного обнаружения ионов металлов метод адсорбционно-комплексообразовательной хроматографии являются (в скобках указаны определяемые элементы) ализарин С (алюминий, циоконий, торий) алюминон (алюминий, бериллий) арсеназо III (цирконий, гафний, торий, уран, редкоземельные элементы) диметилглиоксим [никель, кобальт, железо (II), палладий (И)] 2,2 -дипиридил [железо (И)] дитизон (серебро, висмут, ртуть, свинец, цинк) дифенил-карбазид [хром (VI)] 2-нитрозо-1-нафтол (кобальт) нитро-зо-Н-соль (кобальт) рубеановая кислота [железо (III), [c.248]

    З) Для титана известны две формы его гидрата двуокиси — а и р, отнощения между которыми таковы же, как и в случае олова ( 6 доп. 36). Получаемый путем гидролиза солей на холоду а-гидрат двуокиси титана имеет аморфный характер и легко растворяется в кислотах. При стоянии (быстрее при нагревании) он подвергается старению и постепенно переходит в р-форму, имеющую микрокристаллическую структуру и растворимую лишь в HF или в горячей концентрированной H2SO4. Явления старения характерны также для гидратов двуокисей циркония и гафния. Нагревание а-форм гидроокисей сопровождается наступающим в определенный момент внезапным са-мораскаливанием массы, обусловленным переходом ее из аморфного в кристаллическое состояние. [c.649]

    Сульфаты четырехвалентных циркония и гафния известны и в безводном состоянии и в виде кристаллогидратов 3(504)2-4Н20. Интересно, что при электролизе их растворов к катоду идет водород, тогда как металл вместе с 80 " передвигается к аноду. Это говорит в пользу строения рассматриваемых сульфатов, как комплексных кислот —Н2[Э0 (804)2]-ЗНгО. Строение аналогичного типа имеют, по-видимому, также некоторые другие соли 2г и НГ, [c.650]

    Гидроксиды титана, циркония и гафния (переменного состава) осаждаются щелочами из кислых растворов солей. Наиболее распространенные гидроксиды титана — титановая ортокислота Н4ТЮ4 и титановая метакислота Н2ТЮ3. Гидроксиды циркония Zn(0H)4 и гафния Hf(0H)4 могут иметь различное строение. Все они — белые студенистые вещества, легко переходящие в коллоидное состояние, растворяющиеся в сильных кислотах, но нерастворимые в щелочах. Основность усиливается от Ti(0H)4 к Hf(0H)i. [c.411]

    Ионы [Ме(Н20) ,] не имеющие координированных ОН "-групп пли анионов, существуют только в определенных условиях, например в перхлоратных растворах с концентрацией металлов не более 10 г-атом/л и концентрацией водородных ионов 2 г-ион/л,и выше. В присутствии же анионов-комплексообазователей (N03 , С1 и др.) образуются комплексные ионы типа [Me(NOз)] [Ме(МОз)21 и т. д. С понижением кислотности в растворе появляются ионы [Ме(ОН)] +, Аналогично ведет себя и гафний, хотя степень гидролиза его растворов несколько ниже, чем у циркония первые константы гидролиза для них 1,33-10 и 2,10-10 . При растворении солей 2г и Н в воде равновесие устанавливается крайне медленно. Например, pH раствора оксихлорида циркония становится более или менее постоянным только через сутки после его растворения. В разбавленных растворах солей цирконий преимущественно находится в виде ионов [2г(ОН)з]  [c.282]


    В растворах соединений циркония и гафния с концентрацией более 10 —10 моль/л наряду с гидролизом протекают процессы гидролитической полимерЦзации и образования оловых соединений. В отличие от титана эти процессы ие заходят так глубоко. Наиболее вероятно существование ди-, три- и тетрамерных ионов, имеющих определенную структуру, хотя наряду с ними могут быть и ионы цепочечного строения с молекулярной массой до нескольких тысяч, т. е. приближающиеся по размерам к коллоидным частицам. При гидролизе растворов солей 2г в большинстве случаев даже при нагревании не образуются осадки и Только в нитратных растворах наблюдаются опалесценция и частичное выпадение циркония в осадок. Кислоты препятствуют гидролизу и гидролитической полимеризации, однако и при высокой их концентрации (6 моль/л и выше) в растворах обнаруживаются полиядерные комплексы. Присутствие в растворах анионов — сильных комплексообразователей, например Р", может в значительной мере препятствовать гидролизу и предотвращать образование полиядер- [c.282]

    Цирконаты и гафнаты. При сплавлении и спекании двуокисей циркония и гафния с гидроокисями, карбонатами и другими солями щелочных, щелочноземельных, редкоземельных и некоторых других металлов образуются многочисленные цирконаты и гафнаты. Как указывалось ранее (стр. 221), соединения этого типа правильнее относить к сложным окислам. С щелочными металлами образуются соединения типа тМс2 0-п1г02 (НЮо) (где т = I, п = I 3). Цирконаты и гафнаты щелочных металлов гидролизуются водой, однако гидролиз может тормозиться вследствие образования на поверхности нерастворимых пленок гидроокисей. Разбавленными кислотами раз- [c.284]

    При добавлении к кислым растворам сульфатов циркония и гафния сульфатов аммония, щелочных и других металлов выпадают соли типа Ме4 [Zr(S04)4l xH20 и Ме2 [2г(504)з]-д Н. 0. Из водных растворов сульфата и оксихлорида циркония выделяются кристаллические суль-фатогидроксоцирконаты (их называют также сульфатоцирконатами) с соотношением 504 " Zr, равным 1,5, 1,0, 0,5. Их эмпирические формулы  [c.288]

    Восстановление фтористых солей. Из термодинамических данных следует, что фториды циркония и гафния могут быть восстановлены кальцием, натрием, магнием, алюминием. Реакция 2гр4 с Са начинается при 700—750° и протекает до конца  [c.346]

    Осажденные твердые катализаторы для приготовления высокомолекулярных полиэтиленов при низком давлении можно готовить взаимодействием солей титана, циркония, гафния, тория, урана, ванадия, ниобия, тантала, хрома, молибдена и вольфрама с триалкилалюминием [101]. Вместо триалкилалюми-ния можно применять галогениды алюминия [102] и алкильные производные магния и цинка [103]. Возможно также использовать алкильные производные металлов группы I, например натрия или лития [52, 75]. Аналогичные -катализаторы могут использоваться и для полимеризации высших олефинов [1, 59]. [c.288]

    ГАФНИЯ ДИОКСИД HfOj, Спл 2780 °С, Скип ок. 5400 °С не раств. в воде, раств, в HF-кислоте и H2SO4. Получ. прокаливанием гидроксида Hf или его термически нестойких солей, напр, нитратов. Примен. для изготовления регулирующих стержней ядерных реакторов и защитных экранов компонент спец. стекол перспективный компонент огнеупоров.  [c.121]

    В первом иатепте в качестве катализатора орго-алкилирования предлагали металлы способные образовать е фенолом соли, - Ка, К, 1-1, Мё, п, Ре, Л1, Си позднее была обнаружена каталитическая активность фенолятов галлия 49, 50], титана [51, 52], циркония, гафния, ниобия, тантала и ванадия [53], но практическое значение напюл только фенолят алюминия. [c.199]

    Описаны методы синтеза мегагафниевокислого бария и калыция спеканием углекислых солей этих элементов с двуокисью гафния с многочасовой выдержкой на двух-трех температурных уровнях заключительная стадия спекания проводится при 1400—1500° [3, 4, 7, 8]. [c.11]

    Гафний Hf (лат. Hafnium, от древнего названия Копенгагена — Hafnia). Г.— элемент IV группы 6-го периода периодич. системы Д. И. Менделеева, п. и. 72, атомная масса 178,49. Положение Г. в периодической системе было предсказано Д. И. Менделеевым. Д. Костер и Г. Хевеши в 1923 г. обнаружили Г. в норвежской руде. Г.— типичный рассеянный элемент. Он не образует собственных минера.яов и в природе сопутствует цирконию. Г.— серебристо-белый металл. Чистый Г. пластичен, легко поддается холодной и горячей обработке. По химическим свойствам сходен с цирконием. В соединениях проявляет степень окисления-(-4. Металлический Г. на воздухе покрывается пленкой оксида НГОг.При нагревании реагирует с галогенами, а при высоких температурах с азотом и углеродом, образуя тугоплавкие HfN и Hf . Растворяется в плавиковой и концентрированной серной кислоте. Водные растворы солей Г. легко гидролизуются. Применяется Г. для изготовления катодов электронных ламп, нитей ламп накаливания, жаростойких железных и никелевых сплавов, в атомной технике и др. [c.36]

    Прибавление ЭДТА или ее солей к перхлоратным растворам циркония и гафния стабилизирует их по отношению к действию щелочей Выделение гидроксидов происходит лишь при рН>9, после образования ряда промежуточных комплексонатов. [c.150]

    Аналогичный процесс отмечается и в системах гафний — ЭДТА и гафний — ГЭИДА. В последнем случае, однако, не происходит димеризации [713]. В целом комплексонаты циркония и гафния подвержены гидролизу и полимеризуются в значительно меньшей степени, чем простые соли этих элементов. [c.376]

    Ацетилацетонат циркония, содержащий 10 молекул кристаллизационной воды, выветривается на воздухе и может б ыть полностью обезвонсен в вакууме при давлении 0,1 мм рт. ст. Безводная соль медленно сублимируется в вакууме, причем приблизительно при 140° незначительно разлагается. При 194,.5—19.5° соль плавится с разложением. Ацетилацетонат реагирует со спиртом [2]. В других органических растворителях при 2.5° он растворяется в следующих количествах (на 1 тг) в сероуглероде — 30 г, в четыреххлористом углероде — 47 г, в аце-тилацетоне —. 56 г, в бромистом этилене — 44 г, в бензоле приблизительно 200 г. Раствор как гидрата, так и безводного соединения в сероуглероде по истечении некоторого времени окрашивается в красный цвет. Растворы ацетилацетоната гафния обнаруживали такое же свойство, чего нельзя сказать о соответствующем соединении тория. [c.120]


Смотреть страницы где упоминается термин Гафния соли: [c.514]    [c.196]    [c.99]    [c.103]    [c.646]    [c.651]    [c.286]    [c.120]    [c.491]    [c.320]    [c.341]    [c.505]    [c.97]   
Электрохимические реакции в неводных системах (1974) -- [ c.415 , c.418 ]




ПОИСК





Смотрите так же термины и статьи:

Гафний



© 2025 chem21.info Реклама на сайте