Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Красители как коллоидные

    Он выполняется следующим образом. На середину полоски плотной, гомогенной фильтровальной (хроматографической) бумаги, пропитанной буферным раствором с определенным значением pH, наносят каплю исследуемого коллоидного раствора. Затем на полоску бумаги накладывают разность потенциалов. Под влиянием образующегося электрического поля отдельные компоненты, содержащиеся в капле, обладающие разными электрофоретическими подвижностями, передвигаются по полоске с различными скоростями. Через некоторое время компоненты распределяются на бумаге в виде стольких зон, различно удаленных от исходной точки, сколько компонентов содержалось в растворе. Полоску высушивают и прогревают для денатурации и фиксации находящихся на ней белков и после этого окрашивают подходящими красителями. В результате проявляется распределение компонентов по длине полоски. Роль бумаги в этом методе сводится к устранению диффузионного и конвекционного перемешивания белков при электрофорезе. [c.210]


    Определенное влияние на солюбилизацию нерастворимых продуктов оказывают диалкилдитиофосфаты, сульфонаты, фосфо-наты, алкилсалицилаты, беззольные сукцинимиды. Это свойство присадок изучалось с применением красителя родамин С и асфаль-тенов в качестве солюбилизата [69, с. 166]. Установлено, что совместимость указанных присадок носит индивидуальный характер беззольные моющие агенты не отличаются эффективным солюбилизирующим действием, однако в смеси могут препятствовать выпадению осадка из коллоидного раствора. Весьма эффективны в том отношении сукцинимидные присадки. [c.98]

    Данная книга является первой в запланированной серии монографий по адсорбции из растворов, поэтому в ней вопросы кинетики и динамики адсорбции совершенно не затрагивались. Этим вопросам предполагается посвятить отдельную книгу. По той же причине в настоящей книге не рассмотрены особенности адсорбции ассоциированных веществ — так называемой мицеллярной адсорбции. Этот раздел адсорбции из растворов (адсорбция ПАВ, красителей, коллоидных электролитов) имеет большое значение для многих вопросов технологии и также заслуживает специального рассмотрения. [c.4]

    Производительность измельчителя типа 202 при производстве эмульсии составляет 50—100 кг/ч, а измельчителя типа 805 500— 1000 кг/ч. Измельчители применяют для приготовления коллоидной серы, арсенитов кальция и меди, красителей, коллоидного графита и других коллоидных систем, а также используются как эмульгаторы, гомогенизаторы, смесители и разрыхлители. [c.241]

    Красители. Коллоидное состояние растворов некоторых красителей, как и других полуколлоидов, зависит от температуры и концентрации. Повышение концентрации красителя в растворе способствует ассоциации его частиц в мицеллы, а повышение температуры вследствие увеличения теплового движения, наоборот, замедляет процесс мицеллообразования и разрушает уже имеющиеся мицеллы. [c.171]

    Часто сохраняется и белый или окрашенный фон ткани. Напечатанную ткань высушивают, а затем фиксируют насыщенным паром при 101—105 °С (синтетические волокна 125—130°С) или горячим сухим воздухом (термофиксация). В других случаях окраску проявляют в водном растворе, содержащем необходимые реактивы. После фиксации материал тщательно промывают. Краска для печатания является раствором или, для кубовых, дисперсных красителей и пигментов, дисперсией, содержащей кроме красителя коллоидный раствор загустителя, препятствующего растеканию краски (крахмал, растительный клей и др.) и различные реагенты (в зависимости от применяемого красителя, волокна и способа печати, см. стр. 418). [c.242]


    Коллоидное состояние вещества чаще всего осложняет анализ, влечет за собой ошибки. Но иногда свойство соединения образовывать золи используют для повышения чувствительности или селективности реакций. Некоторые гидроксиды дают плохо различимые коллоидные осадки. В этих случаях к раствору прибавляют немного красителя. Коллоидные частицы получающегося гидроксида адсорбируют краситель и осадок становится хорошо заметным. [c.97]

    Наиболее распространенными в химической технологии являются конвективный и контактный способы сушки. Последний способ позволяет необходимое для высушивания материала тепло передавать путем контакта с нагретой поверхностью, что имеет место в сушильной части бумагоделательной машины, при сушке паст красителей, коллоидных растворов и суспензий. [c.310]

    НОЙ серы, арсенита кальция, медного арсенита, красителей, коллоидного графита и других коллоидных систем, а также используются как эмульгаторы, гомогенизаторы, смесители и разрыхлители. [c.247]

    Красители, придающие стеклу необходимый цвет оксиды и соли металлов, образующие в стекле коллоидные растворы меди (I), железа (П), кобальта (П), хрома (Ш), хлорида золота, сульфата меди (II) и др. [c.316]

    Вспомогательные материалы вулканизаторы (сера), наполнители (сажа, белая сажа — коллоидная кремниевая кислота), красители, пластификаторы и другие ингредиенты. [c.195]

    Ознакомление с приведенным перечнем убеждает в том, что он является почти всеобъемлющим. Найдется, вероятно, очень немного маслорастворимых поверхностно-активных веществ, которые нельзя было бы отнести к какой-либо из перечисленных групп. Напрашивается вывод, что классификация синтетических детергентов, основанная иа химическом признаке, вряд ли может принести практическую помощь, так как любое соединение, способное образовать в растворителе коллоидный раствор, представляет собою потенциальный детергент, пригодный для химической чистки. Но для того чтобы быть приемлемым в качестве такового, моющее средство не должно обладать запахом, быть неустойчивым и оказывать вредное действие на ткани и красители. Вместе с тем оно должно легко удаляться при прополаскивании очищенных предметов одежды, а также не усложнять фильтрацию и перегонку растворителя. [c.159]

    Для предотвращения максимумов требуется достаточно большая концентрация постороннего электролита. Кроме того, максимумы можно подавить некоторыми коллоидными растворами или красителями. Чаще всего применяют раствор желатина или метилоранжа. Максимумы удается устранить и некоторыми другими приемами, например применяя капилляры с расширением на самом конце и т. д. [c.220]

    К коллоидным ПАВ относят вещества, молекулы которых имеют явно выраженный дифильный характер содержат достаточно длинные углеводородные радикалы (более 0 12 углеродных атомов) и хорошо гидратирующуюся полярную группу (часто ионогенную). Такими веществами являются мыла (соли жирных кислот), некоторые красители, различные синтетические Плв и т. д. [c.74]

    Солюбилизирующую способность ПАВ легко оценить, насыщая их водные растворы олеофильным красителем. Такой краситель, будучи нерастворим в воде, растворяется в гидрофобной части мицелл, вызывая окрашивание раствора. Интенсивность окраски тем выше, чем больше количество коллоидно растворенного красителя. Это позволяет определять количество солюбилизированного красителя обычными методами колориметрического анализа. Из красителей при- [c.188]

    При введении в достаточно концентрированные растворы ПАВ практически нерастворимых в воде органических веществ (алифатические и ароматические углеводороды, маслорастворимые красители и т. д.) последние способны коллоидно растворяться, или солюбилизироваться. В результате такой солюбилизации образуются почти прозрачные термодинамически равновесные растворы. Вещество, которое растворяется в растворах ПАВ, принято называть солюбилизатом. [c.412]

    Содержание работы. Колориметрическим методом определяют коллоидную растворимость красителя судан III в мицеллярном растворе ПАВ. [c.189]

    Крашение волокна и дубление кожи является также примером технологий, где основную роль играют коллоидные процессы. Крашение и дубление заключается в диффузии, коллоидных частиц красителя или дубителя в ткань или голье, в коагуляции этих частиц при соприкосновении с элементарными волоконцами и в фиксации скоагулированных частиц на элементарных волоконцах. [c.31]

    Иногда при определении защитного действия высокомолекулярного вещества вместо золя золота пользуются коллоидны ми растворами серебра, красителя конго-рубин, гидрата окиси железа и др. В этих случаях говорят соответственно о серебряном, рубиновом, железном и других числах. В табл. IX, 2 приведены значения этих чисел для некоторых защитных веществ. [c.305]

    Солюбилизирующую способность ПАВ часто оценивают с помощью олеофильных красителей (например, судан П1, оранжевый ОТ). Такле красители, практически нерастворимые в воде, растворяются в гидрофобной части мицелл, окрашивая раствор. Интенсивность окраски раствора тем выше, чем больше количество коллоидно-растворенного красителя. Содержание солюбилизированного красителя определяют, измеряя оптическую плотность раствора. По оптической плотности с помощью калибровочного графика определяют количество солюбилизированного красителя в единице объема раствора 5. Мольную солюби н-зирующую способность данного раствора П.АВ рассчитывают как отнсниение полученного значения 5 к концентрации ПАВ  [c.136]


    С опалесценцией связано специфичное для коллоидных систем явление — конус Тиндаля (эффект Тиндаля). При фокусировании света в сосуде с коллоидным раствором и наблюдении в перпендикулярном лучу направлении в растворе видна светящаяся полоса, узкая со стороны входа света и более широкая на выходе (имеет форму конуса). При тех же условиях освещения чистые жидкости и молекулярные растворы не дают подобного эффекта (за исключением растворов некоторых флуоресцирующих красителей). Путем несложного эксперимента легко установить, является ли раствор коллоидным или истинным (молекулярным, ионным). [c.389]

    Многие ПАВ — мыла, моющие агенты (детергенты), танниды, некоторые красители, алкалоиды,— являясь истинно растворимыми соединениями, способны также к образованию мицеллярных коллоидных растворов. При большом разбавлении ПАВ находятся в растворе в виде отдельных молекул или ионов и их растворы являются истинными. С увеличением концентрации ПАВ их дифильные молекулы или ионы ассоциируют друг с другом и образуют агрегаты, называемые мицеллами. [c.442]

    Итак, мы приходим к важному выводу хемосорбированные молекулы и сорбент, т. е. молекулы, присоединенные к твердому телу атомными связями, и данное твердое тело (как атомы или молекулы примеси, соединенные с атомами твердого тела атомными связями, и соответствующее твердое тело), представляют собой единую квантовую систему. Подобные системы, как мы видим, могут образовать как неорганические вещества, например примеси 2пО или СнгЗ в сульфиде цинка, так и органические с неорганическими, в частности красители-сенсибилизаторы, адсорбированные А Вг. Последние могут находиться на поверхности бромида серебра в виде коллоидных частиц—агрегатов молекул. Как указывает А. Н. Теренин, существует беспрепятственный перенос энергии или электронов по таким агрегатам даже в том случае, когда они не имеют кристаллического строения. Следовательно, контактное соединение (см. гл. IV) аморфного и кристаллического вещества является также единой квантовой системой. [c.132]

    С этой точки зрения можно сказать, что в настоящее время экспериментальные данные, позволяющие непосредственно судить об эквивалентности или неэквивалентности обменной адсорбции компенсирующих ионов в двойном слое, совершенно недостаточны. Действительно, из приведенных примеров в случае золей сернистого мышьяка, золота, трехокиси вольфрама, пятиокиси ванадия и двуокиси титана, а также, вероятно, мастики процесс ионного обмена осложнен образованием малорастворимых солей в интермицеллярной жидкости. В случае адсорбции красителей коллоидной кремнекислотой мы, вероятно, имели дело с адсорбцией не ионов, а молеку.ч. Наконец, в случае окиси железа ничего определенного сказать нельзя, так как количества адсорбированных и вытесненных анионов не сравнивались при достаточно высоких концентрациях прибавленного электролита. Однако, как было указано, в случае коагуляции электролитами положительных коллоидов мы имеем косвенные указания на то, что процесс обменной адсорбции должен толковаться с более широкой точки зрения, не требующей соблюдения эквивалентности замещающихся компенсирующих ионов. Непосредственные указания на несоблюдение эквивалентности получены в нашей лаборатории при коагуляции щелочных золей кремнекислоты солями бария. Значительная адсорбция ионов Ва (— 10 N) сопровождается вытеснением очень малых количеств Н -ионов (— 10 Л ), причем концентрация Ка-ионов остается практически неизменной. [c.105]

    В дальнейшем выяснилось, что ассоциации могут подвергаться также одноименно заряженные Hotibi, обладающие большими р ззмерами и малыми зарядами, как, папример, ионы органических красителей, пикраты, перхлораты и др. Очевидно, что в этом случае за ассоциацию ответственны не кулоновские, а близкодействующие, в частности дисперсионные, силы. Эти силы не учитываются теорией Дебая — Гюккеля, и ее приложимость к таким — переходным к коллоидным—системам должна быть весьма ограниченной, что подтверждается опытными данными. [c.98]

    Сложность работы в атой области объясняется тем, что она находиУпся на стыке нескольких весьма различных дисциплин технологии производства красителей, коллоидной химии и механохимии, физической химии и, наконец, технологии процессов крашения. Надо быть чрезвычайно широкообразованным человеком, чтобы, свободно оперируя знаниями в этих областях, выработать единый научный подход к технологии выпускных форм красителей. Такими качествами в полной мере обладал автор настоящей книги Л. М. Го- ломб, разработавший общую теорию производства выпускных форм красителей, которую назвал колл о и дно-химической концепцией. [c.3]

    Собранные и обобщенные в монографии материалы по технологии выпускных форм кубовых и дисперсных красителей показывают, что данная область находится на стыке нескольких дисциплин — технологии производства красителей, коллоидной химии и механохимии, многих разделов физической химии и колористики, которая понимается здесь как область изучения не только цветности, но и всех технических свойств красителей в процессах применения их на текстильных материалах — колорирования. [c.215]

    За последнее время были сделаны опыты по электронному фотографированию кол.чоидных растворов, помещенных между двумя тонкими пластинками из соответствующего материала микронной толщины. Если при этом в коллоидный раствор ввести краситель, избирательно поглощающий электроны, то вследствие абсорбции красителя коллоидными частицами получается более отчетливое изображение и удается полнее использовать высокую разрешающую способность электронного микроскопа. [c.103]

    Сточные воды предприятий целлюлозно-бумажной промышленности во многих странах рассматриваются в качестве одного из самых крупных источников загрязнения окружаюшей среды. В их состав входят и биогенные элементы (азот и фосфор), и такие загрязнители, как фенолы, масла, хлорорганические соединения, красители, коллоидные частицы и другие органические загрязняющие вешества, с трудом поддаюшиеся очистке. Для целлюлозно-бумажного производства целесообразно объединение всех сточных вод для очистки в охшн поток. Перед поступлением на очистные сооружения общие сточные вода характериззтотся следующими показателями  [c.129]

    Нафтеновые кис.лоты применяются при производстве мыл, смааок, некоторых масел, различных моющих композиций. Свободные нафтеновые кислоты применялись в качестве растворителей для каучука, анилиновых красителей. По имеющимся данным [38], добавление чистых нафтеновых кислот к коллоидным растворам может уменьшить вязкость последних, не изменяя их основных свойств. Нитрованные или сульфированные нафтеновые кислоты способны разрушать нефтяные эмульсии. При конденсации сульфированных нафтеновых кислот с аминами, аминокислотами и аминоспиртами, а также при сульфировании нафтеновых кислот хлорсульфоновой кислотой получаются продукты, [c.56]

    Крашение хлопка субстантивными красителями, по всей вероятности, основано на адсорбции. Все эти красители обладают коллоидным характером крашение ими ведстся с добаилснием соли ( солевые краски ), которая, по-видимому, как и в случае других коллоидов, способствует осаждению вещества на волокне. [c.611]

    Строение двойного электрического слоя у частиц с постоянным дипольным моментом. Н. А. Толстой с сотр. показали, что существуют коллоидные частицы с электрической дипольной структурой, образующиеся вследствие самопроизвольной униполярной ориентации адсорбированных на их поверхности диполей дисперсионной среды (например, Н2О, 0Н и т. д.) или вследствие ориентации полярных групп самого вещества частиц. Подобные частицы, как показали различные электрооптические методы исследования, обладают жестким большим электрическим моментом (тысячи и миллионы дебаев). Так, перманентная ди-польня я структура обнаружена у пятиокиси ванадия, у частиц суспензий глйны, гуминовых золей, суспензий ряда красителей и некоторых бактерий и вирусов. Можно с достаточной уверенностью сказать, что подобные дипольные структуры, привлекшие в последнее время особое внимание исследователей, широко распространены в коллоидных и биологических системах. [c.190]

    К системам, в которых наблюдаются обратимые переходы подобного рода, относятся водные растворы многих поверхностноактивных веществ, например, мыл и мылоподобных веществ, а также растворы таннидов (дубильных веществ) и некоторых красителей. Эти растворы, если в них содержатся частицы, состоящие из большого числа мплр.ку.гц с полным правом можно отнести к лиофильным коллоидным системам, так как они обладают признаками коллоидных систем — гетерогенностью и высокой дисперсностью, но в отличие от лиофобных коллоидных систем термодинамически равновесны и агрегативно устойчивы. [c.399]

    К красителям, проявляющим в растворах все особенности, свойственные растворам коллоидных ПАВ, относится ряд синтетических красителей, например, бензопурпурин, ночной голубой и т. д. Ионогенными группами у коллоидных красителей служат карбоксильные группы, фенольные группы, сульфо-группы, аминогруппы и т. д. Растворы этих красителей сходны с растворами высокомолекулярных соединений — они обладают сравнительно высокой агрегативной устойчивостью, а образующийся при введении электролитов осадок способен диспергироваться в чистой воде. Растворы этих красителей проявляют такие же аномалии в отнощении электропроводности и осмотического давления, как и растворы мыл и таннидов. С. М. Липатов показал, что благодаря большому размеру молекул красителей ассоциация в растворах протекает значительно в большей степени, чем в растворах мыл, и весьма сильно зависит от концентрации, температуры, pH системы, присутствия электролитов и других факторов. Как и мыла, многие красители, дающие коллоидные растворы в воде, в спирте обра зуют молекулярные растворы. [c.415]

    Для измерения теплоты смачивания пользуются калориметрами самых разнообразных конструкций. В лаборатории коллоидной химии ЛГУ применяют весьма простой прибор типа калориметра Шот-тки. Калориметр (рис. 60) состоит из сосуда— кожуха 7 (дюаровский сосуд), помещенного в термостат 8. В сосуд вставляется второй сосуд 6 с капилляром и шкалой 1 и боковым отростком 3 с краном и воронкой. Во внутреннем сосуде имеется вплавленная пробирка. Внутренний сосуд наполняется жидкостью с большим коэффициентом термического расширения (толуол или хлороформ), а сверху водным раствором какого-ни-будь красителя, для облегчения наблюдений по капиллярной шкале. [c.149]

    Рассмотрим вопрос о заряде коллоидных частиц, от которого в существенной мере зависит их агрегативная устойчивость. Возникновение этого заряда частиц связано с избирательной адсорбцией ионов из раствора. В ряде случаев частицы могут приобретать заряд за счет собственной ионизации. Так, например, вольфрамовая и оловянная кислоты, кислые красители отщепляют в воде ионы водорода, а остающиеся на поверхности анионы составляют отрицательную обкладку у двойного слоя. Однако количество зарядов и их плотность не определяют непосредственно устойчивость коллоидных систем. Коллоидные частицы находятся в непрерывном движении. Это создает условия, порождающие возникновение электрокинетическо-го потенциала. [c.410]


Смотреть страницы где упоминается термин Красители как коллоидные: [c.205]    [c.740]    [c.370]    [c.207]    [c.12]    [c.300]    [c.389]    [c.96]   
Коллоидная химия (1959) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте