Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоиды положительные

    Помимо вещества той среды, в которой они распределены, коллоидные частицы способны адсорбировать и другие присутствующие в жидкой фазе молекулы, а также — что особенно важно —ионы. Так как свойства поверхности у одинаковых коллоидных частиц одни и те же, все они заряжаются при этом одноименно адсорбирующие преимущественно катионы — положительно (положительные коллоиды), адсорбирующие главным образом анионы — отрицательно (отрицательные коллоиды). Положительными при обычных условиях получения являются, в частности, гидрозоли окислов металлов, отрицательными — гидрозоли сернистых соединений (а также кремневой кислоты) [c.609]


    Почему коллоидные частички, находясь в беспрерывном движении и все время встречаясь друг с другом, не слипаются Слипанию коллоидных частиц препятствует наличие у них электрического заряда — у одних коллоидов положительного, у других — отрицательного. Заряд у коллоидных частиц возникает либо вследствие отщепления ими со своей поверхности ионов того или иного знака в раствор (как при диссоциации электролитов), либо вследствие адсорбции поверхностью коллоидных частичек ионов того или другого знака из раствора. Так, от частичек гидроокиси кремния, как кислоты, отщепляются в раствор ионы водорода, и частички получают отрицатель- [c.111]

    Автором этой книги изучалась адсорбция полония на пергаменте, стекле и коллоидах (положительных и отрицательных) [c.43]

    Отрицательно заряженный коллоид. Положительно заряженный коллоид. [c.244]

    Коллоидные частицы данного вещества, как правило, сорбируют на своей поверхности ионы одного и того же заряда.. Все частицы данного коллоида поэтому несут на себе один и тот же заряд. Различают коллоиды положительные и коллоиды отрицательные. [c.89]

    Вблизи гидрофильных поверхностей плотность воды повышена и давление на стенке выше Рй- Структурная составляющая расклинивающего давления здесь положительна (П8>0). Резкое возрастание структурных сил отталкивания при утончении водных прослоек препятствует слипанию частиц гидрофильных коллоидов и обеспечивает устойчивость тонких пленок воды на гидрофильных поверхностях. В тех случаях, когда состояние поверхности является промежуточным между гидрофильным и гидрофобным, структура воды в граничных слоях изменена незначительно и структурное взаимодействие практически не проявляется. В этом случае взаимодействие м жду поверхностями, разделяющими водную прослойку, определяется, в соответствии с теорией Дерягина — Ландау—Фервея — Овербека (ДЛФО), молекулярной и электростатической составляющими расклинивающего давления [42, 43]. [c.16]

    Кремневую кислоту приходится выделять из ее коллоидного раствора при анализе различных минералов, руд, технических силикатов и др. материалов. Кремневая кислота является гидрофильным коллоидом, и полное выделение представляет большие трудности. После однократного выпаривания с соляной кислотой обычно кремневая кислота полностью в гель не переходит. Коллоидные частицы кремневой кислоты в солянокислом растворе имеют отрицательный заряд коллоидный раствор желатины в тех же условиях имеет положительный заряд поэтому прибавление желатины приводит к коагуляции кремневой кислоты. [c.83]


    Аналогично этому гидратация гидрофильных коллоидов обусловливается электростатическими силами, т. е. за счет электрических зарядов, возникающих вследствие ионизации. На поверхности коллоидных частиц высокомолекулярных веществ образуются оболочки, состоящие из диполей воды, ориентированных в зависимости от знака заряда ВМС своим положительным или отрицательным концом. [c.333]

    Явление взаимной коагуляции играет большую роль в почвенных процессах часть содержащихся в почвах коллоидов образуется в результате взаимной коагуляции положительно заряженных золей Ре(ОН)з, А1(ОН)з и отрицательно заряженных золей кремневой кислоты, а также гуминовых веществ. Явление взаимной коагуляции используется при очистке воды от органических веществ. [c.238]

    Мембранный потенциал может быть легко обнаружен с помощью двух каломельных электродов, помещенных в равновес ные жидкости, находящиеся по обе стороны от мембраны. В случае положительно заряженного коллоида, потенциал каломельного электрода, погруженного в камеру с коллоидом I, всегда оказывается более положительным, чем потенциал каломельного электрода, опущенного в равновесный раствор, не содержащий коллоида. [c.308]

    Электролиты, находящиеся в коллоидном растворе, уменьшают дзета-потенциал и соответственно понижают устойчивость коллоидного раствора. Именно поэтому с целью повышения устойчивости применяют диализ для удаления электролитов из коллоидного раствора. Однако глубокий диализ приводит к противоположному результату, вызывая коагуляцию коллоидов. Рассмотрим коллоидный раствор положительно заряженных частиц (Agl), , который содержит некоторое избыточное количество ионов Ag и примеси нитрата натрия, от которой необходимо избавиться с помощью диализа. Во время диализа происходит одинаковое относительное уменьшение концентрации всех ионов, которые находятся в растворе, — примеси Na+, N07 и ионов Ag . Последние должны содержаться в растворе для сохранения адсорбционного равновесия, т. е. для сохранения стабильным наряда коллоидных частиц (Agi),,,. Как видно из рисунка 106, уменьшение концентрации ионов серебра в растворе, происходящее вместе с уменьшением концентрации примесей (Na и N07), вначале мало влияет на величину адсорбции ионов Ag+. Заряд ядра и соответственно величина термодинамического потенциала почти не изменяются, а в связи со значительным уменьшением концентрации противоионов (ионов N07) в растворе возрастает дзета-потенциал устойчивость коллоидного раствора увеличивается. [c.423]

    Заметно перенапряжение водорода возрастает при адсорбции на поверхности металлических электродов положительно заряженных органических ионов, например иона тетрабутиламмония. В отличие от поверхностно активных анионов подобные вещества адсорбируются на отрицательно заряженной поверхности электрода и десорбируются при более положительных потенциалах по сравнению с точкой нулевого заряда. На перенапряжение заметно влияют добавки в электролит некоторых других высокомолекулярных соединений, коллоидов и слабых органических кислот. [c.301]

    Знак заряда коллоидных частиц может быть установлен на опыте, так как под действием постоянного электрического тока положительные коллоиды передвигаются к катоду, а отрицательные — к аноду. При изучении этого явления (называемого электрофорезом) исследуемый гидрозоль помещают в нижнюю часть снабженной кранами и-об-разной трубки (рис. Х-65), затем закрывают оба крана, промывают верхнюю часть прибора, заполняют ее водой и опускают в нее электроды. После открывания обоих кранов и включения постоянного тока в трубке начинает происходить электрофорез. Передвижение коллоидных частиц от одного полюса к другому особенно легко наблюдать в случае цветных золей непосредственно по изменению уровня окрашенного слоя жидкости в обоих коленах трубки. [c.609]

    Причиной возникновения заряда может быть также контактная электризация, наблюдаемая обычно на границе раздела двух тесно соприкасающихся фаз и обусловленная переходом в пограничном слое части электронов от одной из них к другой. В результате фаза с меньшей величиной диэлектрической проницаемости заряжается отрицательно, с большей — положительно. Например, поверхность стекла при контакте с водой заряжается отрицательно. Многие коллоиды, имеющие в воде (е = 81) отрицательный заряд, в характеризующихся малыми величинами диэлектрической проницаемости органических растворителях становятся заряженными положительно. Аналогичная электризация имеет место также при трении друг о друга различных твердых веществ (например, стекла о шерсть). Она создает порой серьезные трудности при проведении некоторых промышленных процессов. [c.615]

    Адсорбционные индикаторы отличаются от всех описанных тем, что изменение окраски происходит на поверхности коллоид-но-дисперсной фазы. Такая фаза в процессе титрования адсорбирует ионы, находящиеся в растворе в избытке, заряжаясь положительно (при адсорбции катионов) или отрицательно (при адсорбции анионов). Присутствующие в растворе молекулы красителя-индикатора могут адсорбироваться под действием электростатических сил на заряженной поверхности осадка. При этом осуществляется деформация электронной системы молекулы и появляется определенная окраска. В точке эквивалентности происходит перезарядка поверхности осадка, определяемая избытком ионов титранта йри этом изменение заряда приводит к новой деформации электронной системы индикатора и его цвет меняется, что и указывает на окончание основной реакции. [c.157]


    Изменение pH среды в более кислую или щелочную сторону от изоэлектрической точки коллоида увеличивает степень набухания. Это объясняется появлением положительного или отрицательного заряда у коллоидных частиц и, следовательно, повышением степени гидратации (рис. 110, 11 К). [c.236]

    Коллоиды, адсорбирующие положительные ионы, называются положительными (например, гидраты окисей металлов), а адсорбирующие отрицательные ионы — отрицательными (например, сульфиды и коллоидные металлы). Коллоидные частички (ядра) с адсорбированными ионами называются гранулами, а вместе с ионами противоположного знака ( противоионы ), связанными с гранулами, называются мицеллами. Качественный состав мицелл может быть выражен следующими формулами  [c.245]

    Казалось бы, из работ Грэма и его современников, не обнаруживших заметной диффузии и осмотического давления в коллоидных растворах и считавших это отсутствие одним из отличительных признаков коллоидов, следует отрицательный ответ на этот вопрос. Однако последующие данные привели, несомненно, к положительному ответу. Более того, оказалось возможным движение коллоидных частиц, в отличие от молекул, наблюдать непосредственно. Удалось вывести основные законы, общие для молекул и коллоидных частиц. Экспериментальное их подтверждение явилось на рубеже XIX—XX вв. триумфом молекулярно-кинетической теории, завоевавшей всеобщее признание. Эти экспериментальные факты в значительной степени связаны с броуновским движением, долгое время остававшимся загадкой. [c.26]

    Заряд ядра коллоидной частицы зависит также от химической природы вещества, образующего ядро. Например, гидроокиси металлов, обладающие основным характером, преимущественно образуют положительно заряженные золи и осадки, а частицы коллоидов, содержащие ядра из веществ кислотного характера, образуют отрицательно заряженные золи. [c.87]

    Волокна фильтровальной бумаги, широко применяемой в аналитической химии, и хроматографической бумаги состоят из коллоида — целлюлозы (клетчатки). Эти волокна имеют диэлектрическую проницаемость, значительно меньшую, чем вода, и несут на поверхности отрицательные электрические заряды. Поэтому положительно заряженные коллоидные частицы фильтруемого раствора и осадка легко удерживаются на поверхности волокон бумаги. Образующ,иеся осадки забивают поры фильтров, что замедляет фильтрование. Стеклянные и асбестовые фильтры обладают аналогичными свойствами. Частицы коллоидальных осадков гидроокисей и сульфидов могут прочно приставать даже к стенкам стеклянных сосудов, так как поверхность стекла отрицательно заряжена. [c.89]

    В зависимости от условий получения коллоидные частицы одного и того же вещества могут иметь как положительный, так и отрицательный заряд. Если, например, к раствору нитрата серебра, взятому в избытке, добавляют раствор иодида калия, образовавшиеся коллоид-ные частицы имеют положительный заряд  [c.132]

    Взвешенные частички большинства коллоидов несут положительные (коллоидные растворы гидроокисен алюминия, железа, хрома и др.) или отрицательные (коллоидные растворы кремневой и оловянной кислот, сернистые соединения мышьяка и кадмия, галогениды серебра и др.) заряды. Зарядность коллоидных частиц обусловливается адсорбцией на их поверхности анионов (отрицательный заряд) или катионов (положительный заряд). Так, сульфиды адсорбируют 5 - и 5Н -ионы, галогениды серебра — Ag - или СГ-ионы, гидроокиси — ОН -ионы. [c.229]

    Таким образом, на положительно заряженные частицы коллоидов оказывают влияние анионы, на отрицательно заряженные — катионы, причем более высокозарядные анионы и катионы оказывают более сильное коагулирующее действие. [c.231]

    Знак заряда коллоидных частиц может быть установлен на опыте, так как под действием постоянного электрического тока положительные коллоиды передвигаются к катоду, а отрицательные — к аноду. [c.331]

    Полярность максимумов проявляется также при добавлении в раствор красителей и коллоидов. Положительные максимумы подавляются анионными красителями, тогда как отрицательные максимумы, напротив, легче подавляются катионными красителями и алкалоидами. Аналогичным образом положительные коллоиды, частицы которых несут положительный заряд, в большей степени подавляют отрицательные максимумы, а отрицательные коллоиды больше подавляют положительные максимумы. Например, натриевая соль фуксинсульфоновой кислоты (анионный краситель) подавляет сильнее положительный максимум таллия, чем отрицательный максимум никеля раствор мыла (отрицательный коллоид) легко подавляет максимум таллия, тогда как на отрицательный максимум на волне бария практически [c.411]

    Перенос заряда в жидкости в зависимости от природы носителей может осуществляться различными механизмами. В нефтяных системах возможно существование и конкуренция различных типов проводимости (электронная, электронно-дырочная, форетическая), причем с участием как положительно, так и отрицательно заряженных носителей. Нередко нефтяные системы являются коллоидами, так что форетическая электрическая проводимость (движение заряженных дисперсных частиц) становится преобладающей. [c.60]

    На процесс коагуляции существенное влияние оказывает солевой состав воды. Анионы слабых кислот обусловливают емкоси, буфера, способствуя гидролизу коагулянта. Катионы могут изменять заряд коллоидных частиц. Например, в жестких водах отрицательно заряженные коллоиды за счет адсорбции ионов кальция и магния могут приобрести положительный заряд. При значениях рН>7 этот заряд может нейтрализоваться ионами 804 из сернокислого алюминия, а ион алюминия будет полностью гидролизоваться до Л (ОН)з. Доза коагулянта в этом случае будет меньше, чем при коагуляции глинистой взвеси с отрицательно заряженными частицами. Следовательно, ион-партнер 504 оказывает суще ственное влияние на процесс коагуляции в водах с повышенной жесткостью. С добавлением в воду коагулянта у частиц происходит сжатие двойного электрического слоя, способствующее сближению их на такое расстояние, где проявляются межмолекулярные силы притяжения, и частицы укрупняются. [c.143]

    Легко видеть слабые стороны такого объяснения агрегативной устойчивости. Весьма трудно представить себе возникновение в результате сольватации противоионов вокруг лиофобных частиц сплошных сольватных оболочек, препятствующих слипанию частиц прн их сближении. В самом деле, сольватные йболочки из полярных молекул среды образуются отдельно вокруг каждого противоиона двойного слоя. Это должно приводить к тому, что на границе, разделяющей оболочки двух соседних одноименно заряженных противоионов, молекулы среды, представляющие собой диполи, будут обращены друг к другу одноименно заряженными концами и< следовательно, будут испытывать взаимное отталкивание. Кроме того, следует помнить, что микроструктура окружающего частицы слоя непрерывно меняется в результате теплового движения ионов. Понятно, > то при таких условиях говорить о создании в результате притяжения и ориентации диполей какого-то синюшного слоя из сцепленных друг с другом ионов и молекул среды, нужного для обеспечения положительного раскли-яивающего давления или упругости сольватной оболочки, просто невозможно. Положительное расклинивающее давление, обусловливающее агрегативную устойчивость лиофобных коллоидов, может возникать лишь в результате деформации ионных атмосфер, т. е. может определяться только электростатическими силами. [c.282]

    Гош и Дхар считают, что положительное привыкание обусловлено медленно протекающей адсорбцией коллоидными частицами одноименно заряженных с этими частицами ионов, что приводит к некоторому увеличению заряда, повышающему устойчивость золя. Однако было показано, что при коагуляции адсорбция ионов, заряженных одноименно с коллоидйыми частицами, происходит только в редких случаях и поэтому точка зрения Гоша и Дхара едва ли имеет. достаточное основание. [c.303]

    При коагуляции положительных коллоидов коагулируюш,ее действие таким же образом зависит от заряда и концентрации анионов. [c.206]

    Следует отметить, что в том случае, когда частицы коллоида заряжены положительно, каломельный электрод, соединенный с коллоидным раствором, оказывается более положительным, по сравнению с каломельным электродом, соединенным с равновесной жидкостью. В этом случае pH коллоидного раствора оказывается выше, чем pH равновесного раствора. При отрицательно заряженном коллоиде наблюдаются обратные закономерности. В случае нахождения коллоида в изоэлектр Ической точке оба эффекта должны отсутствовать, и таким путем может быть определена изоэлектрическая точка исследуемого вещества. [c.312]

    Частным случаем коагуляции электролитами является взаимная коагуляция двух гидрофобных золей с различными знаками зарядов. В отличие от обычной электролитной коагуляции при определенном соотношении концентрации смешиваемых золей всегда наступает переразрядка, тогда как при обычной коагуляции пере-разрядка происходит только при действии многовалентных ионов-коагуляторов. Взаимная коагуляция имеет большое значение как в ряде природных, так и технологических процессов. Коагуляция почвенных коллоидов электролитами и взаимная коагуляция коллоидов имеет большое значение в формировании почвенного горизонта. В качестве примера технического использования взаимной коагуляции можно назвать очистку водопроводной воды от коллоидных частиц, проходящих через песчаные фильтры, с помощью добавок солей алюминия (квасцов или сульфата алюминия). Эти соли в воде гидролизуются и образуют положительно заряженные коллоидные частицы А1(0Н)з, которые, взаимодействуя с коллоидными частицами в воде, заряженными в большинстве случаев отрицательно, приводят к взаимной коагуляции с выпадением коагулированных частиц в осадок. [c.336]

    Подобно растворам электролитов, глч гидрофобных коллоидов проводят электрический ток. Это проводимость второго рода при наложении электрического поля на золь дисперсная фаза начинает перемещаться к полюсам (либо к положительному —аноду, либо к отрицательному — катоду). Это явление получило название электрофореза (греч. phora — перенесение, перемещение) оно аналогично электролизу. Если коллоиднодисперсная фаза пере мещается к катоду (катафорез), то говорят о положи-гельных коллоидах, если к аноду (анафорез), то — об отрицательных. К числу первых относятся коллоидно дисперсные гидроокиси металлов (железа, алюминия, хрома и др.), к числу вторых — коллоидные металлы (золото, серебро, платина и т. д.), сера, ряд сульфидов (мышьяка, меди, свинца и пр.). [c.271]

    Поверхность коллоидных частиц обычно адсорбирует преимущественно те яоны которые образуют наиболее труднорастворимые соединения с противоположно заряженными ионами, входящими в состав самих этих частиц (VU 3 доп. 10). В тех случаях, когда при образовании последних по конденсационным методам имеется избыток одного из ионов, входящих в их собственный состав, такие ионы по преимуществу и адсорбируются, сообщая частицам свой заряд. Если, например, получать гидрозоль Agi по реакции обменного разложения между AgNOa и KI, то при избытке AgNOa из различных имеющихся в растворе ионов (Ag. NO3, К ) на коллоидных частицах Agi лучще всего адсорбируется Ag. Напротив, при избытке KI из различных имеющихся в растворе ионов (к, NO3) лучше всего адсорбируется I. В связи с этим Agi является в первом случае положительным коллоидом, во втором — отрицательным. [c.615]

    В некоторых случаях при прибавлении к золю электролитов происходит перезарядка коллоидных частиц, т. е. перемена знака их электрического заряда. Явление это обусловлено избирательной адсорбцией одного из прибавляемых ионов уже после достижения изоэлектрической точки, т. е. состояния системы, вызывающего разряжение коллоидных частиц. Например, если положительно заряженный гидрозоль окиси железа вливать в раствор NaOH, то происходит усиленная адсорбция коллоидными частицами ионов ОН, причем избыток последних (сверх количества, необходимого для разряжения) сооби1ает частицам отрицательный заряд. Состав мицеллы такого отрицательного гидрозоля окиси железа может быть выражен общей формулой л Ре2Оз-г/Н2О 20Н + гЫа". Вследствие перезарядки частиц многие коллоиды, коагулирующие при прибавлении небольших количеств электролитов, в присутствии высоких концентраций тех же самых электролитов не коагулируют. [c.617]

    Разряжение коллоидных частиц может быть достигнуто прибавлением не только электролитов, но и противоположно заряженных коллоидов. Например, если К отрицательному золю AS2S3 добавлять положительный золь окиси железа, то происходит взаимное разряжение частиц и их совместная коагуляция. Такая коагуляция коллоидов коллоидами имеет в некоторых случаях большое практическое значение. [c.617]

    Привыкание можно объяснить разными причинами. Положительное привыкание может происходить в случае добавок небольших количеств электролитов, способных иептизировать коллоид, а отрицательное привыкание является следствием астабилизи-рующего влияния на золь первых порций электролита при постепенном его прибавлении (Глазман). Другое объяснение сводится к тому, что в результате медленной реакции между золем и электролитом образуются новые соединения, обладающие свойством стабилизатора коллоидной системы (Крестииская). [c.130]

    Гидролизом раствора Fe lg в кипящей воде можно получить золь Ре(ОН)з с положительным зарядом частиц. Дробя электрографит, получаемый из нефтяного кокса, и применяя защитные коллоиды, получают полидисперсные суспензии в воде ( аквадаг ), масле ( ойл-даг ), спирте и других жидкостях. Такой коллоидальный графит применяют как смазочный материал, из него получают тонкие высокоомные пленки на стекле или керамике, им покрывают стенки стеклянных колб осциллографических трубок, кинескопов, телевизионных передающих трубок, электроды ламп в целях подавления вторичной эмиссии и т. д. [c.177]

    Какого из электролитов А1(ЫОз)з, N32804, СаСЬ требуется меньше всего, чтобы вызвать коагуляцию а) положительно заряженного, б) отрицательно заряженного коллоида  [c.113]

    Большой интерес представляют адсорбционно-комплексообразова-тельные процессы — извлечение германия с помощью сорбентов, обработанных комплексообразователем — лимонной или винной кислотой, оксихинолином, пирокатехином, таннином и т. п. В качестве примера можно привести разработанный в ГДР [88] способ адсорбции на смоле, насыщенной таннином. Смола Вофатит Е, имея аминогруппы, обладает слабым положительным зарядом. Она очень пориста, способна набухать. Таннин, как отрицательно заряженный коллоид, прочно связывается с ней при медленном пропускании3—5%-ного раствора. [c.183]

    Заряд коллоида определяют тем ионом, который в начале образования коллоида имелся в избытке. Руководствуясь этими соображениями, можно получить частицы золя Agi с различным знаком заряда. При избытке AgNOg образующаяся коллоидная частица Agi приобретает положительный заряд, так как в данном случае адсорбируется избирательно ион Ag+ подобным же образом можно получить и отрицательно заряженные частицы при избытке KI-При избытке AgNOg ядро частицы, состоящее из большого числа молекул Agi, адсорбирует ионы Ag+  [c.211]

    Наибольшая защитная способность проявляется в том случае, если заряды частиц обоих коллоидов одноименны. В кислой среде при рН=4,7 желатин заряжен положительно поэтому при адсорбции его на поверхности отрицательно заряженной частицы AsaSj общий заряд дисперсной фазы в коллоидном растворе будет понижаться. Наоборот, в щелочной среде желатин приобретает отрицательный заряд. В этом случае адсорбция частицами AsaSj отрицательно заряженных частиц желатина повышает стабильность золя не только вследствие защитного действия желатина, но также в результате повышения отрицательного заряда дисперсной фазы. Понятно, что количество желатина как защитного коллоида при прочих равных условиях в последнем случае должно быть меньше, чем в первом. [c.232]


Смотреть страницы где упоминается термин Коллоиды положительные: [c.187]    [c.339]    [c.231]   
Учебник общей химии 1963 (0) -- [ c.311 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.609 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоиды



© 2025 chem21.info Реклама на сайте