Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен-нитрильный каучук

    Бутадиен. Бутадиен является основным мономером для получения синтетических каучуков. Путем полимеризации бутадиена получают бутадиеновый каучук, который в зависимости от условий полимеризации выпускают различных марок. В последнее время большое внимание уделяется получению сополимерных видов синтетических каучуков. При полимеризации бутадиена со стиролом получается бутадиен-стирольный каучук. После добавки наполнителей и вулканизации получается каучук, по свойствам близкий к натуральному. Бутадиен используется также в качестве сырья для производства бутадиен-нитрильного каучука. Сополимер бутадиена и акрилонитрила устойчив к действию высоких температур и масла. Ценными свойствами обладает также бутилкаучук, получаемый путем совместной полимеризации бутадиена с изопреном. [c.79]


    СКН можно применять в комбинации с хлоропреновым каучуком, тиоколом, поливинилхлоридом, НК, СКИ-3, БСК, СКД, фенол-формальдегидными смолами, а также с другими смолами и полимерами. При этом резины приобретают те или иные специфические свойства. Большинство резин, используемых в буровом и нефтепромысловом оборудовании, производят на основе бутадиен-нитрильного каучука. [c.17]

    В качестве эмульгаторов применяются калиевые и натриевые соли природных и синтетических жирных кислот и диспропорционированной канифоли, алкилсульфонат натрия и др. Этими эмульгаторами заменяется некаль (натриевая соль дибутилнафталинсульфокислоты), применяющийся в производстве бутадиеннитриль-ных каучуков. Выбор эмульгатора обусловлен его доступностью, способностью обеспечивать необходимую скорость полимеризации, устойчивостью латекса на всех стадиях технологии производства и способностью биологически разлагаться при очистке сточных вод. Применяемые анионоактивные эмульгаторы не оказывают влияния на микроструктуру каучука. Бутадиен-нитрильный каучук СКН-18, полученный при 30°С с применением некаля, алкилсуль-фоната натрия и калиевого мыла синтетических жирных кислот, имеет одну и ту же микроструктуру транс-1,4-звеньев 60,0—63,8%, г с-1,4-звеньев 26,2—30,2% и 1,2-звеньев 8,0—11% [9]. [c.358]

    Композиционная неоднородность сополимеров, получаемых методом эмульсионной сополимеризации, изучена в настоящее время гораздо менее других молекулярных характеристик. Экспериментально зарегистрирована заметная композиционная неоднородность бутадиен-нитрильных каучуков, выпускаемых рядом фирм [44, 45]. [c.67]

    Весьма интересно сопоставить свойства простых сополимеров бутадиена и акрилонитрила (бутадиен- нитрильные каучуки СКН) и привитого сополимера, полученного на основе тех же компонентов и при одинаковом соотношении их в макромолекулах обоих сополимеров. Привитые сополимеры полибутадиена и акрилонитрила после вулканизации, как и вулканизаты каучука СКН, превосходят вулканизаты натурального каучука или полибутадиена по теплостойкости и атмосферостойкости. Привитой сополимер отличается большей прочностью и эластичностью по сравнению с простым сополимером бутадиена и акрилонитрила. Без введения усиливающего наполнителя предел прочности при растяжении вулканизатов привитого сополимера может достигать 174 кг см , относительное удлинение—765%, предел прочности при растяжении вулканизатов простого сополимера [c.540]

    Бутадиен-нитрильные каучуки (СКН) получаются совместной полимеризацией бутадиена-1,3 и акрилонитрила СН2 = СН—СЫ. Состоит в основном из продуктов 1,4-присоеди-нения. [c.82]

    На практике эти процессы идут последовательно, но часто и параллельно и потому их трудно разграничить. Однако преимущественное протекание того или иного процесса в значительной степени зависит от структуры каучука. Так, хорошо известно, что ответственными за процессы деструкции являются внутренние двойные связи, а за процессы структурирования — внешние двойные связи. В связи с этим для стереорегулярных полимеров диенов, построенных по типу 1,4-присоединения, характерны процессы деструкции, и для полидиенов, содержащих в полимерной цепи значительное количество 1,2- или 3,4-звеньев — процессы структурирования. На соотношение процессов деструкции и структурирования влияют также плотность упаковки полимера, наличие и характер групп, обрамляющих полимерную цепь, и другие факторы. Этим следует объяснить, что ис-1,4-полибутадиен более склонен к структурированию, чем ( с-1,4-полиизопрен, а также большую склонность к структурированию бутадиен-нитрильных каучуков по сравнению с бутадиен-стирольными. [c.619]


    Металлы переменной валентности (за исключением железа) оказывают незначительное влияние на окисление бутадиен-нитрильного каучука [33, 37], и медь в данном случае проявляет функции ингибитора процесса окисления. Это обстоятельство, а также ранее приведенные факты двойственного характера влияния меди на окисление полибутадиена [39] позволяют предположить, что возможен синтез стабилизаторов для синтетических каучуков, которые в своем составе содержат металлы переменной валентности. Описана возможность применения диалкилдитиокарбаматов этих металлов для стабилизации каучуков [29]. [c.630]

    Основной особенностью бутадиен-нитрильных каучуков (БНК) является наличие полярных нитрильных групп, которые придают ему специфические свойства. Из них главными являются стойкость к действию масел и алифатических углеводородов, повышенное сопротивление тепловому старению. [c.356]

    Бутадиен-нитрильный каучук с содержанием акрилонитрила 20% 363,3 [c.357]

    Модификация ДСТ-30 с помощью окиси и двуокиси углерода позволила получить полимеры с карбоксильными и сложноэфирными группами в бутадиеновой части. При введении в модифицированный термрэластопласт окисей и гидроокисей металлов достигается увеличение тепло- и температуростойкости при сохранении вязкотекучих свойств, достаточных для осуществления экструзии материала [27]. Созданием композиций на основе термоэластопласта обычно преследуют цель снизить е.го стоимость, поэтому вводят такие материалы, как масла, различные смолы, мел и т. д. Однако модификация бутадиен-стирольного термоэластопласта хлоропреновыми, бутадиен-нитрильными каучуками и друсими высокомолекулярными добавками позволяет улучшить их масло- и бензостойкость, адгезию и снизить температуру переработки без существенного снижения физико-механических свойств [28]. Из композиций на основе бутадиен-стирольных термоэластопластов изготовляют формовые изделия, резиновую обувь, пластины, покрытия для полов, листы для печатных матриц, спортивные товары (ласты, маски, тенисные мячи), кожухи для оборудования и приборов, эластичную тару и др. [c.290]

    Эпихлоргидриновые каучуки обладают комплексом свойств, делающих их весьма ценным материалом для промышленного использования. Одно из отличительных качеств этих каучуков — их маслобензонефтестойкость [42]. Маслостойкость гомополимера ЭХГ и сополимера ЭХГ и ОЭ выше, чем хлоропренового, бутадиен-нитрильного и акрилатного каучуков. Оба эпихлоргидриновых каучука, являясь насыщенными соединениями, обладают более высокой озоностойкостью, чем хлоропреновый и бутадиен-нитрильный каучук. Газопроницаемость эпихлоргидриновых каучуков ниже, чем бутилкаучука [3, 36, 37] и бутадиен-нитрильного каучука [36]. Особый интерес представляет сочетание высокой маслобензостойкости с удовлетворительной морозостойкостью (—40—45 °С) у сополимера ЭХГ и ОЭ, который в этом отношении значительно превосходит бутадиен-нитрильный и акрилатный каучуки. Введение в сополимер пластификатора позволяет понизить температуру, при которой еще сохраняется эластичность, до —62 С [43]. Эти свойства дают возможность применять сополимер для изготовления деталей, используемых в нефтяной промышленности, в частности для шлангов, работающих в условиях севера, а также для деталей автомобилей и самолетов. Хлорсодержащие группы придают гомополимеру ЭХГ огнестойкость [3], а насыщенность увеличивает стабильность эластомеров [37]. [c.581]

    СИНТЕЗ БУТАДИЕН-НИТРИЛЬНЫХ КАУЧУКОВ [c.358]

    Бутадиен-нитрильные каучуки (СКН) получают эмульсионной полимеризацией бутадиена (дивинила) с нитрилом акриловой кислоты (акрилонитрилом), в результате образуются молекулы [c.16]

    Кроме того, опыт показывает, что нестабильность течения меньше у полимеров, макромолекулы которых имеют небольшое число длинноцепочечных разветвлений. Это, видимо, объясняется их склонностью к пластикации и меньшей долей эластически эффективных узлов в структурах, содержащих разветвленные макромолекулы, что способствует рассеянию энергии при деформации. Наличие в каучуках сильно структурированных (плотных) частиц также повышает стабильность течения смесей (но может ухудшать другие показатели), так как частицы нарушают регулярность сетки физических зацеплений и понижают ее способность к накоплению энергии внешней деформации. Например, при изучении вязко-упругих свойств акрилатных каучуков было показано, что разрушение структуры расплавов, усадка в формах и разбухание экструдатов резко уменьшается при введении в каучуки сильно сшитых частиц размером 50—300 нм [23]. При этом эластические эффекты определяются степенью структурирования частиц и мало зависят от их размеров. Аналогичные изменения, выразившиеся в уменьшении усадки и улучшении поверхности каландрованных изделий, наблюдали при введении частиц плотного геля в бутадиен-нитрильные каучуки [24]. На этом же принципе основано получение специального сорта НК с улучшенными технологическими свойствами [25]. [c.80]

    На рис. 2 приведены кривые напряжение — деформация (о —X) для трех сажевых смесей, полученных на основе различных каучуков. Как видно из рисунка, при растяжении смеси на основе бутадиен-нитрильного каучука наблюдается постепенный рост напряжений и некоторый спад перед разрывом смеси такой вид кривой о — X является типичным для некристаллизующихся каучуков. Сравнительно высокий уровень напряжений объясняется полярностью полимерных цепей бутадиен-нитрильного каучука и, соответственно, повышенным взаимодействием сажа — каучук. Для смеси на основе НК при 200—300% растяжения наблюдается вторая, более крутая ветвь увеличения напряжения, связанная с развитием процесса кристаллизации каучука поэтому разрыв наступает при высоком напряжении. В то же время для синтетического ис-полиизопрена, по содержанию цис-1,4-звеньев близкого к НК, имеет место течение смеси п разрыв происходит при низких напряжениях. [c.74]


    В некоторых работах приводятся слишком большие (>10) значения индекса полидисперсности каучуков эмульсионной поли- ер1 ации [12, 37, 38]. Появление аномально высоких значений MjMn обусловлено в большинстве случаев наличием в полимере микрогеля. Молекулярная масса микрогеля равна нескольким десяткам миллионов, поэтому даже незначительное содержание его в полимере сильно увеличивает Яу,. Возникновения микрогеля и макрогеля далеко не всегда удается избежать даже при использовании регулятора молекулярной структуры. Рыхлый микрогель, а в некоторых случаях и макрогель, содержатся в бутадиен-нитрильных каучуках [33, 38]. Микрогель, содержащийся в бутадиенстирольном каучуке типа 1502, подробно описан в работе [39]. [c.67]

    Система персульфат калия — триэтаноламин используется в производстве бутадиен-нитрильных каучуков. [c.137]

    Тиокол ДА применяется для изготовления маслобензостойких рукавов, прокладок и других резинотехнических изделий, а также для повышения маслобензостойкости и улучшения технологических свойств смесей на основе бутадиен-нитрильных каучуков. [c.570]

    По анализируемым показателям лучшим каучуком для изготовления поршней буровых насосов является бутадиен-нитрильный каучук, так как его обобщенный показатель (коэффициент ранговой корреляции) имеет наибольшее значение. Результаты расчетов проиллюстрированы на рис. 8.1. В то же время повышение технологичности и снижение стоимости сделает применение уретановых эластомеров весьма перспективным для изготовления поршней и уплотнений гидравлической части буровых насосов. [c.158]

    К полярным эластомерам относятся бутадиен-нитрильные каучуки СКН-18, СКН-26 и СКН-40. Их релаксационные спектры отличаются от спектров неполярных эластомеров тем, что наряду с -релаксационными переходами здесь наблюдается еще и л-процесс. В полярных эластомерах между полярными группами в макромолекулах (в бутадиен-нитрильных эластомерах — СЫ-группы) возникают локальные диполь-дипольные поперечные связи, которые являются одним из видов физических узлов молекулярной сетки эластомера. Они более стабильны, чем микроблоки надмолекулярной структуры (образованные полибутадиеновыми участками цепей), и менее стабильны, чем химические поперечные связи. В результате л-процесс (см. рис. 12.6), природа которого объясняется подвижностью локальных диполь-дипольных связей, характеризуется временем релаксации Тя большим, чем времена релаксации Я-процессов, и меньшим, чем время химической релаксации сшитого эластомера. [c.348]

    Мягкие масло-, бензо-, морозо- и водостойкие резины на основе бутадиен-нитрильного каучука СКН-18 и хлоропренового каучука (наирита) предназначены для уплотнений, эксплуатируемых при ограниченных значениях перепада давления и скорости скольжения в среде топлив, масел, воды, слабых растворов кислот и щелочей при температуре от -55 до 100 °С. [c.10]

    При использовании резин для уплотнений следует учитывать влияние воды на релаксацию напряжений в них. Вода ускоряет релаксационные процессы, как это было установлено на резинах, полученных на основе бутадиен-нитрильных каучуков. Влияние это осложняется окислительными процессами, обусловленными растворенным в воде кислородом. [c.121]

    БУТАДИЕН-НИТРИЛЬНЫХ КАУЧУКОВ [c.356]

    Серийные гуммировочные материалы изготовляют на основе натурального и синтетических (изопренового, хлоропренового, бутадиенового и бутадиен-стирольного) каучуков. Резиновые смеси на основе перечисленных каучуков обладают хорошими технологическими свойствами. Благодаря высокой пластичности их легко перерабатывают на каландрах в резиновое полотно толщиной от 1,5 до 3,0 мм и применяют для гуммирования изделий методом листовой обкладки. На основе бутадиен-нитрильного каучука, бутилкаучука и фторкаучука изготовляют резиновые смеси, обладающие повышенной прочностью, высокими теплостойкостью и стойкостью к маслам и растворителям. Но они обладают плохими технологическими свой- [c.135]

    В качестве стопперов применяют гидрохинон, тетраметилтиу-рамдисульфид, полисульфид натрия, диметилдитиокарбамат натрия и др. Более подробно регулирование молекулярной массы и стопперирование процесса полимеризации описано в главах, посвященных производству эмульсионных бутадиен-стирольных и бутадиен-нитрильных каучуков. [c.143]

    Мягкие маслобензостойкие и морозостойкие резины на основе бутадиен-нитрильного каучука СКН-18, предназначенные для подвижных и неподвижных уплотнений, эксплуатируемых при ограниченных перепаде давления и скоростях скольжения в воздухе при температуре от -45 до 100 °С, в нефтяных маслах и рабочих жидкостях — при температуре от -60 до 100 °С. [c.10]

    Карбоксилсодержащие бутадиеновые, изопреновые, бутадиен-стирольные, бутадиен-а-метилстирольные, бутадиен-нитрильные каучуки получают методом эмульсионной сополимеризации соответствующих мономеров с непредельными карбоновыми кислотами— акриловой, метакриловой, итаконовой, главным образом метакриловой кислотой при температуре полимеризации 5—60°С [1]. Наибольшее значение в практике приобрели каучуки, содержащие 1—2% метакриловой кислоты. В таких сополимерах одна карбоксильная группа приходится на 200—300 атомов углерода в главной цепи [1, 2]. Строение карбоксилсодержащего каучука, например, бутадиен-стирольного СКС-30-1, может быть изображено формулой  [c.397]

    Исследовались несшитые и сшитые бутадиен-нитрильные каучуки с различным содержанием нитрильных СЫ-групп в цепях (18, 26 и 40%). Характеристики процессов разрушения сопоставлены с релаксационными данными (спектры времен релаксации, спектры внутреннего трения и вязкость). [c.348]

    Среднетвердые маслостойкие резины на основе бутадиен-нитрильного каучука СКН-26, эксплуатируемые в тех же условиях, что и резины подгруппы 3, при температуре от -40 до 100 °С, кратковременно — при 150 °С. [c.11]

    Каучук СКС-30-1 используется в производстве искусственной кожи. Карбоксилсодержащий бутадиен-нитрильный каучук СКН-26-1,25 с 1,25% метакриловой кислоты применяется для изготовления теплостойких клеев. Аналогичный бутадиен--нитрильный сополимер СКН-26-5, содержащий 5% метакриловой кислоты, используется в изделиях электронной техники. Карбоксилсодержащие бутадиен-нитрильные каучуки могут быть использованы для изготовления маслостойких прокладок и других формованных изделий, маслобензостойких подошв и т. д. [8]. [c.403]

    Маслобензостойкие резины на основе бутадиен-нитрильного каучука СКН-40 отличаются значительно меньшим набуханием, но худшей морозостойкостью, чем резины на основе каучука СКН-18, предназначены для неподвижных уплотнений и уплотнений вращающихся валов, работающих в условиях, что и резины подгруппы 3, при температуре от -30 до 100 °С. [c.11]

    Пленки полимеризованных глифталевых лаков, лакоткань марки Л ХМ, ыаслостойкая резина (на основе бутадиен-нитрильного каучука) в горячем масле выделяют компоненты кислого характера, увеличивающие кислотность [c.555]

    Впервые факт возрастания относительной степени разветвленности при увеличении М для бутадиен-стирольного каучука был установлен в серии работ Блэчфорда и Робертсона [30]. Аналогичное явление обнаружено по данным седиментационных и вискозиметрических измерений для бутадиен-нитрильных каучуков [22]. Например, в случае СКН-26 т1М = 0 при Л1 = 2,5-10 и т/Л1 = 3,5-10 при Л1 = 12,7-105, Такая же тенденция отмечена и для полихлоропрена. Совокупность этих фактов дает основание считать, что рост абсолютной т и относительной т/Л1 степени разветвленности цепей с ростом молекулярной массы является общей закономерностью для каучуков эмульсионной полимеризации. [c.65]

    Гомо- и сополимеры ЭХГ вследствие лучшей теплостойкости могут применяться при более высоких температурах, чем хлоропреновый или бутадиен-нитрильный каучук, например для прокла-док в маслобаках и моторах [36]. Стойкость к диффузии паров масел, хладоагентов и топлива дает возможность эффективно использовать эпихлоргидриновые каучуки в холодильных установках, газовых диафрагмах и т. п. [35]. [c.581]

    Значительная разветвленность цепей каучуков эмульсионной полимеризации является одной из двух основных причин того, что их индекс полидисперсности MJMn значительно превышает 2— величину, характерную для наиболее вероятного ММР [34]. Вторая причина этого связана со спецификой расхода регулятора молекулярной структуры. Даже в отсутствие реакций разветвления постепенное изменение по ходу полимеризации отношения концентрации регулятора к концентрации мономера в зоне реакции приводит к расширению ММР каучука. Этот эффект выражен тем сильнее, чем выше скорость расхода регулятора. Использование сравнительно медленно расходующегося регулятора позволяет поддерживать ММР каучука достаточно узким [35, 36]. С другой стороны, такой же эффект может быть достигнут и путем введения быстро расходующихся регуляторов (например, диизопропил-ксантогендисульфида) порциями по ходу процесса [35, 36]. Оба эти принципа регулирования используются при промышленном синтезе отечественных бутадиен-стирольных и бутадиен-нитрильных каучуков. [c.66]

    Кроме линейных макромолекул, существует другой тип непла-стицирующихся структур — предельно разветвленные частицы плотного микрогеля. Такие полимерные частицы не должны раз-рушаться при сдвиговой деформации, так как во внутренних областях сшитых структур образование захлестов затруднено вследствие стерических препятствий. Действительно, такие частицы с размерами (1—2)-102 нм обнаружены в НК, бутадиен-стироль-ных и бутадиен-нитрильных каучуках на рис. 4 (кривая 4) приведена зависимость вязкости по Муни бутадиен-нитрильного каучука СКН-40 СШ от времени пластикации. [c.77]

    Для неозона Д, неозона А, параоксинеозона, диафена ФП, бисалкофена БП, алкофена БП имеются данные [72] по давлению пх паров при различных температурах над 3%-ными растворами этих веществ в ряде каучуков (СКИ, СКД, СКМС-ЗОАРК, СКЭПТ, СКН-18, СКН-26 и СКН-40). Давлеппе насыщенного пара зависит не только от природы антиоксиданта, но и от структуры каучука. Практически для всех изученных антиоксидантов давление насыщенного пара над их растворами в бутадиен-нитрильных каучуках в 2—10 раз ниже, чем над растворами в каучуках, не имеющих полярных заместителей. [c.644]

    Оценена стойкость к набуханию в бензине и других нефтепродуктах резин на основе СКЭХГ-СТ в сопоставлении с серийными резинами на бутадиен-нитрильных каучуках. [c.174]

    Сополимеризация бутадиена с акрилонитрилом дает возможность значительно увеличить полярность структуры. Вследствие эт )го температура стеклования сополимера при соотношении исходных мономеров 1 1 возрастает до —35°, вместо —70° для полибута-диепа. Резины на основе таких сополимеров менее эластичны и морозостойки по сравнению с полибутадиеновыми, но зато более прочны и не набухают в бензине, керосине и смазочных маслах. Из бутадиен-нитрильных каучуков изготовляют резиновые баки для хранения жидкого топлива и смазочных масел, бензо- и маслостойкие детали, эластичные маслостойкие шланги и т. п. [c.514]

    Морозостойкие резины на основе комбинации бутадиен-нитрильного каучука СКН-18 и бутадиен-метилстирольного каучука СКМС-10, предназначенные для неподвижных уплотнений и уплотнений вращающихся валов, работающих в тех же условиях, что и резины подгруппы 3, при температуре от -60 до 150 °С. [c.11]

    Адгезивы, покрытие бумаги, сополимеры с изопреноБым каучуком Бутадиенстирольный и бутадиен-нитрильный каучуки [c.42]

    Бутадиен-нитрильные каучуки — аморфные, некристализую-щиеся с молекулярной массой около 200000, плотностью 1000 кг/м . [c.16]


Смотреть страницы где упоминается термин Бутадиен-нитрильный каучук: [c.45]    [c.66]    [c.67]    [c.74]    [c.367]   
Смотреть главы в:

Дивинил -> Бутадиен-нитрильный каучук

Технология нефтехимического синтеза Издание 2 -> Бутадиен-нитрильный каучук

Общая химическая технология Том 2 -> Бутадиен-нитрильный каучук


Основы химии высокомолекулярных соединений (1976) -- [ c.0 ]

Общий практикум по органической химии (1965) -- [ c.219 ]

Машины и аппараты резиновой промышленности (1951) -- [ c.20 , c.21 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.487 ]

Общая химическая технология органических веществ (1955) -- [ c.350 , c.355 , c.356 , c.360 , c.364 ]

Полимерные смеси и композиты (1979) -- [ c.10 , c.67 , c.88 , c.105 ]

Химия высокомолекулярных соединений Издание 2 (1966) -- [ c.411 ]

Основы химии высокомолекулярных соединений (1961) -- [ c.311 ]

Общая химическая технология Том 2 (1959) -- [ c.736 , c.738 , c.742 , c.750 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.487 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.131 , c.132 ]

Основы переработки пластмасс (1985) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен нитрильные каучуки получение

Бутадиен-нитрильные каучуки СКН жесткость

Бутадиен-нитрильные каучуки СКН жидкие

Бутадиен-нитрильные каучуки СКН марки

Бутадиен-нитрильные каучуки СКН методы получения

Бутадиен-нитрильные каучуки СКН модифицированные

Бутадиен-нитрильные каучуки СКН низкотемпературные, свойств

Бутадиен-нитрильные каучуки СКН порошкообразные

Бутадиен-нитрильные каучуки СКН применение

Бутадиен-нитрильные каучуки СКН свойства

Бутадиен-нитрильные каучуки СКН сополимеры тройные

Бутадиен-нитрильные каучуки СКН стадии производства

Бутадиен-нитрильные каучуки СКН структура

Бутадиен-нитрильные каучуки СКН структурированные

Бутадиен-нитрильные каучуки СКН термопластичные

Бутадиен-нитрильные каучуки адгезия

Бутадиен-нитрильные каучуки аппаратурно технологическое

Бутадиен-нитрильные каучуки жидкие карбоксилатные

Бутадиен-нитрильные каучуки и клеи холодного отверждения

Бутадиен-нитрильные каучуки и латексы

Бутадиен-нитрильные каучуки их основе

Бутадиен-нитрильные каучуки компоненты систем эмульсионной

Бутадиен-нитрильные каучуки механич. свойства

Бутадиен-нитрильные каучуки низкотемпературная полимеризация

Бутадиен-нитрильные каучуки оформление производства

Бутадиен-нитрильные каучуки полимеризации

Бутадиен-нитрильные каучуки производство

Бутадиен-нитрильные каучуки проницаемость

Бутадиен-нитрильные каучуки схема получения

Бутадиен-нитрильные каучуки физич. свойства

Бутадиен-нитрильные каучуки эмульгаторы

Бутадиен-нитрильные каучуки. Обозначения и типы Общие сведения

Вулканизация бутадиен-нитрильного каучука Сравнение свойств натурального, бутадиен-стирольного и бутадиен-нитрильного каучуков

Каучук бутадиен-нитрильный бутадиен-стирольный

Каучук бутадиен-нитрильный бутадиеновый

Каучук бутадиен-нитрильный изопреновый вулканизаты

Каучук бутадиен-нитрильный карбоксилатный

Каучук бутадиен-нитрильный кремнийорганические

Каучук бутадиен-нитрильный маслонаполненные

Каучук бутадиен-нитрильный метилвинилсилоксановый

Каучук бутадиен-нитрильный метилсилоксановый

Каучук бутадиен-нитрильный метилфенилсилоксановый

Каучук бутадиен-нитрильный натуральный

Каучук бутадиен-нитрильный полиорганосилоксановые

Каучук бутадиен-нитрильный полисульфидные

Каучук бутадиен-нитрильный саженаполненные

Каучук бутадиен-нитрильный силиконовые

Каучук бутадиен-нитрильный хлорированный

Каучук бутадиен-нитрильный хлоропреновый

Каучук нитрильнЫе

Каучуки синтетические Эластомеры бутадиен-нитрильный СКН

Общие сведения о бутадиен-нитрильных каучуках

Синтетические каучуки бутадиен-нитрильные

Смеси на основе бутадиен-нитрильного каучука Общие свойства

Сополимеры бутадиена и акрилонитрила (нитрильные каучуки)

Термостойкость бутадиен-нитрильных каучуко



© 2025 chem21.info Реклама на сайте