Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

бутадиен синтез

    Тетрагидрофуран является последним продуктом бутадиенового синтеза Реппе. Так как каталитическая дегидратация бутандиола в бутадиен проходит недостаточно гладко и сопровождается образованием побочных продуктов реакции — пропена и формальдегида, бутандиол превращают сначала в тетрагидрофуран, который затем при 260—270° в присутствии водяного пара легко дегидратируется в бутадиен. [c.252]

    В последнее время для синтеза новых каучукоподобных полимеров вновь стали находить применение литийорганические соединения. В связи с тем, что полимеризация под их влиянием протекает по механизму живых цепей, литийорганические соединения использованы для промышленного получения бутадиен-стирольных блоксополимеров —термоэластопластов, содержащих гибкую бутадиеновую часть цепи, состоящую в основном из 1,4-звеньев, и стирольные блоки по концам цепи. [c.13]


    Таким образом, необходимо наличие в металлируемом соединении достаточно подвижного водорода. Растворители эфирного типа значительно облегчают реакцию переноса цепи и, кроме того, сами часто являются объектами металлирования, что служит еще одним доводом к отказу от использования их в процессах получения жидких каучуков методом каталитической полимеризации. Однако в некоторых случаях перенос активного центра возможен также в среде неполярных растворителей. Так, эффективный перенос цепи осуществляется при синтезе бутадиен-стирольных жидких каучуков, если процесс проводят в толуоле в присутствии алкоголятов калия, в качестве добавок сближающих константы сополимеризации. При исследовании кинетики полимеризации 1,3-пентадиена было показано, что если полимеризация транс-формы мономера подчиняется закономерностям полимеризации с литийорганическими соединениями, то цас-форма ведет себя иначе во всех растворителях эффективный перенос на мономер обусловливает расширение молекулярно-массового распределения и получение полимера с молекулярной массой более низкой, чем расчетная [17], [c.418]

    Бутадиен-стирольные каучуки — продукт сополимеризации 1,3-бутадиена и стирола — наиболее распространенный тип каучуков, синтез которых осуществляется в эмульсии под влиянием свободных радикалов. [c.243]

    СИНТЕЗ БУТАДИЕН-НИТРИЛЬНЫХ КАУЧУКОВ [c.358]

    Одностадийное дегидрирование бутана в бутадиен Синтез изопрена на основе формальдегида и изобутилена 595—630 0,16 при дегидрировании 1 при регенерации [c.421]

    Оптимальная температура образования диенов при пиролизе этилена 750 °С. При температурах выше 900 °С бутадиен в продуктах пиролиза исчезает, вероятно, превращаясь по диеновому синтезу в арены  [c.32]

    Использование бутадиена для синтеза хлоропрена не удорожает существенно его производство. Проектная себестоимость производства хлоропрена, основанного на бутадиене, получаемом одностадийным дегидрированием бутана, остается на уровне нлн несколько ниже себестоимости хлоропрена, получаемого ацетиленовым методом. [c.67]

    Из данных таблицы видно, что скорость взаимодействия с формальдегидом 1- и 2-бутенов примерно на два порядка меньше, чем с изобутиленом. Это означает, что в условиях синтеза ДМД бутены нормального строения практически не реагируют и их предварительное выделение из углеводородного сырья не требуется. Данный вывод неприменим лишь к бутадиену, продукт взаимодействия которого с формальдегидом при последующем расщеплении дает циклопентадиен — сильнейший каталитический яд реакции стереоспецифической полимеризации изопрена. Поэтому на исходные С4-фракции налагаются весьма жесткие требования по содержанию 1,3-бутадиена. [c.698]


    Состав реакционной смеси для синтеза бутаДиен-стирольных каучуков зависит от температуры полимеризации, обусловливающей способы инициирования процесса, и является следствием проведения больших научно-исследовательских работ по нахождению оптимальных количеств веществ, входящих в состав смеси [12—16]. [c.250]

    Одним из быстро развивающихся направлений синтеза полимеров является получение бутадиен-стирольных каучуков в растворе в присутствии литиевых катализаторов. Производство растворных бутадиен-стирольных каучуков в 1966 г. отсутствовало, в 1971 г.— составляло 300 тыс. т, в 1972 г. — 350 тыс. т., в 1974 г. — около 570 тыс. т. [1, 2, 3]. Одной из причин такого бурного развития является сравнительная простота получения этих каучуков п ценность их как материалов для изготовления широкого ассортимента резиновых изделий. [c.270]

    Процесс синтеза бутадиен-стирольных статистических каучуков может осуществляться в батарее из двух и более аппаратов, соединенных последовательно. Следует учитывать, что вязкость живого ассоциированного полимера быстро увеличивается как за счет повышения содержания полимера в растворе, так и за счет молекулярной массы, которая непрерывно растет с повышением конверсии мономеров. Вязкость живого ассоциированного полимера с молекулярной массой каучука (Зн-3,5)-10 при его содержании в растворе около 15% (масс,) достигает 20—40 Па-с. При дезактивации (разрушении литийорганических концевых групп) вязкость раствора уменьшается в несколько раз за счет распада ассоциатов. [c.276]

    Схема процесса синтеза бутадиен-стирольных каучуков в растворе приведена на рис. 3. Растворитель и мономеры, очищенные от кислорода и влаги, смешиваются с катализатором и подаются в [c.276]

    Обычно в промышленных условиях полимеризацию проводят в присутствии смеси ионных и неионных эмульгаторов. Это, как правило, увеличивает скорость процесса и повышает устойчивость латексов по сравнению с латексами, синтез которых проводят в присутствии одних только НПАВ. Таким путем можно получать бутадиен-стирольные, бутадиен-нитрильные и некоторые другие латексы. С увеличением доли НПАВ в смеси эмульгаторов наблюдалось возрастание среднего размера частиц. При этом суммарное количество эмульгатора, необходимое для достижения определенной скорости процесса полимеризации, уменьшается. Процесс полимеризации в системах с НПАВ можно проводить в широком диапазоне значений pH, но в нейтральной среде скорость полимеризации обычно невелика. [c.601]

    Металлы переменной валентности (за исключением железа) оказывают незначительное влияние на окисление бутадиен-нитрильного каучука [33, 37], и медь в данном случае проявляет функции ингибитора процесса окисления. Это обстоятельство, а также ранее приведенные факты двойственного характера влияния меди на окисление полибутадиена [39] позволяют предположить, что возможен синтез стабилизаторов для синтетических каучуков, которые в своем составе содержат металлы переменной валентности. Описана возможность применения диалкилдитиокарбаматов этих металлов для стабилизации каучуков [29]. [c.630]

    Важным применением экстракции в нефтяной промышленности является выделение бутадиена-1,3 (сырья для синтеза каучука) пз смеси углеводородов С4, получаемых при отнятии водорода от бу-танов. Эти соединения кипят при близких температурах, поэтому разделение их путем ректификации невозможно. Для разделения в промышленном масштабе применяется водный аммиачный раствор ацетата меди концентрацией 3—3,5 моль/л [74, 89]. Другие растворители оказались менее пригодными [98]. В аммиачном растворе диолефины и углеводороды Д1 енового типа (бутадиен) образуют соединения с ионом меди Си" . В дальнейшем раствор очищается от других растворенных в нем углеводородов путем продувания газом с высоки.м содержанием бутадиена, а затем производится десорб- [c.402]

    Такие сополимеры особенно интересны при синтезе бензостойких каучуков (например, бутадиен-нитрильных), так как в этом случае исключается возможность вымывания антиоксиданта органическими растворителями. [c.642]

    Продукты установки пиролиза — этилен, пропилен, бутадиен и бензол являются сырьем для синтеза других продуктов. Из этилена при реакции его с бензолом в присутствии хлористого [c.158]

    Таким образом, исходным сырьем снова является метанол и изобутилен. Изобутилен для синтеза можно использовать не в чистом виде, а в смеси с н-бутиленом, бутаном и бутадиеном при концентрации его 35—50% (фракция С4 газа каталитического крекинга и пиролиза . [c.89]

    Для получения рацемического О, -эритрита исходным веществом также может служить бутадиен синтез ведут через 1,4-дибромбутен-2, дибромгидрии эритрита и диоксид эритрита  [c.404]

    Стирол (дегидрометилирование толуола) 94 Бутадиен (синтез из ацетиленсодержащего газа [c.37]

    Мировое производство мономеров для синтеза каучука достигло огромных масштабов и исчисляется миллионами тонн в год. В Советском Союзе по мере развития промышленности синтетического каучука также намечается значительное увеличение объема производства мономеров. К числу важнейших мономеров относятся бутадиен (синтез бутадиеновых каучуков), изобутилен (синтез изопрена, полиизобутилена и бутилкаучука), этилен (синтез этанола для бутадиена, этилбензола для стирола и этилен-пропиленового каучука), изопрен (синтез изопренового каучука), пропилен (синтез а-метилстирола, этилен-пропиленового каучука, акрилонитри-ла), хлоропрен (синтез наирита и хлорнаирита). [c.92]


    Целевые фраиции, используемые для получения мономеров в нефтехимическом синтезе, должиы содержать, как правило, не менее 90% целевого компонента. Так, бутадиен-1,3 получают из бутановой фракции, содержащей 93—96% ннбутана. Состав фрак- [c.267]

    Из сильно разветвленных олефинов (как например диметил-бутены и изомерные диизобутилены) образуется только один продукт. Соединения с двумя двойными связями подвергаются гпдроформилированию у одной двойной связи и насыщению — у другой. Нанример, бутадиен образует насыщенные моноальдегиды Сб. Промышленное применение синтеза оказалось наиболее успешным в производстве изооктилового спирта из нефтезаводского сополимера С3—С4, децилового спирта из тримера пропилена и тридецилового спирта из тетрамера пропилена. Важными областями ирименения высших спиртов являются производство моющих средств путем сульфирования, а также получение эфиров с двуосповнымп кислотами для использования в качестве мягчителей и синтетических смазок. [c.579]

    Значительная разветвленность цепей каучуков эмульсионной полимеризации является одной из двух основных причин того, что их индекс полидисперсности MJMn значительно превышает 2— величину, характерную для наиболее вероятного ММР [34]. Вторая причина этого связана со спецификой расхода регулятора молекулярной структуры. Даже в отсутствие реакций разветвления постепенное изменение по ходу полимеризации отношения концентрации регулятора к концентрации мономера в зоне реакции приводит к расширению ММР каучука. Этот эффект выражен тем сильнее, чем выше скорость расхода регулятора. Использование сравнительно медленно расходующегося регулятора позволяет поддерживать ММР каучука достаточно узким [35, 36]. С другой стороны, такой же эффект может быть достигнут и путем введения быстро расходующихся регуляторов (например, диизопропил-ксантогендисульфида) порциями по ходу процесса [35, 36]. Оба эти принципа регулирования используются при промышленном синтезе отечественных бутадиен-стирольных и бутадиен-нитрильных каучуков. [c.66]

    Производство бутадиен-стирольных каучуков, исключая синтез мономеров, состоит из следующих стадий 1) сополимеризация мономеров в эмульсии 2) отгонка незаполимеризовавшихся мономеров 3) выделение и сушка каучука. Весь производственный процесс оформлен по непрерывной технологической схеме. [c.243]

    Для полимеризации в растворе требуются более простые установки и меньший ассортимент материалов, при синтезе достигается полное исчерпывание мономеров и процесс может быть организован с небольшим количеством сточных вод или даже полным их отсутствием. Растворные бутадиен-стирольные каучуки требуют на 167о меньше капиталовложений, чем эмульсионные (при мощности завода 50 тыс. т/год), и стоимость их на 4% ниже [4, 5]. [c.270]

    Синтез бутадиен-стирольных и изопрен-стирольных термоэластопластов с эластичным сополимерным блоком может осущест-- ййтьея введением па второй стадии, после полимеризации стирола, смеси стирола с бутадпеном или изопреном [7, 9]. При этом образуется сначала сополимер бутадиена или изопрена со стиролом, а затем блок полистирола. [c.285]

    Синтез полимеров с использованием металлического лития известен давно [36, с. 250—257], однако трудности в оформлении непрерывного процесса с использованием дисперсии лития и большие расходы металла явились препятствием для его промышленной реализации. Наряду с синтезом статистического бутадиен-стирольного каучука с применением алкиллития в СССР разработан непрерывный способ [37] получения полимеров и сополимеров в растворе с применением металлического лития в виде крупных гранул в сочетании с регулятором степени полимеризации (литий-алюминийорганические соединения). [c.275]

    При полимеризации на литийалкилах в неполярных средах температура реакции хотя и влияет на структуру полибутаднена [38], но в пределах 40—80 °С это влияние незначительно (увеличение содержания 1,2-звеньев на 1 —1,5%), поэтому процесс синтеза можно проводить при повышенных температурах до 70—80 °С, что также способствует снижению вязкости раствора и улучшению теплообмена. Несомненно, в большей степени на образование 1,2-звеньев влияют микропримеси, содержащиеся в товарном бутадиене, и применяемый растворитель. [c.276]

    Существует ряд способов синтеза термоэластопластов. Из них наиболее удобным является способ последовательной полимеризации мономеров, который может быть использован при синтезе бутадиен-стирольных (ДСТ), изопрен-стирольных (ИСТ), бутадиен-а-метилстирольных (ДМСТ) и бутадиен-стирол-а-метилстирольных (ДСМСТ) термоэластопластов. В СССР разработаны промышленные способы получения всех перечисленных выше марок термоэластопластов. [c.285]

    В производстве БНК используется бутадиен того же качества, что и в производстве бутадиен-стирольных каучуков. Акрилонитрил применяется с концешрацией выше 99%. Он получается различными способами, из которых важное значение приобрел синтез его из пропилена, аммиака и кислорода. Акрилонитрил характе-рпзуется следующими свойствами т. кип. 77,3 °С, растворимость в воде 7,3%, растворимость воды в акрилонитриле 3,17о- Не содержащий посторонних примесей акрилонитрил устойчив к окислению на воздухе и нагреванию. Как технический продукт хранится в присутствии гидрохинона, р-нафтола и др. Двойная связь акрилонитрила обладает высокой реакционной способностью, обусловленной ее поляризацией цианогруппой, атом азота которой смещает я-электроны двойной связи и понижает ее электронную плотность. Благодаря поляризующему влиянию цианогруппы акрилонитрил обладает способностью к полимеризации и сополимеризации [7, 8]. [c.358]

    При синтезе бутадиен-стирольных и изопрен-стирольных термоэластопластов сначала полимеризуют стирол при 20—50 °С, затем бутадиен или изопрен при 20—60°С и снова стирол при 20— 80 °С [7]. В некоторых случаях для улучшения технологических свойств термоэластопластов в качестве инициатора используют смесь моно- и дилитийорганических соединений [8]. [c.285]

    Описанный метод синтеза бутадиен-а-метилстирольного тер-моэластопласта позволяет осуществлять полимеризацию бутадиена в неполярной среде. Это обеспечивает получение диеновой части блоксополимера с высоким содержанием 1,4-звеньев. Если на третьей стадии процесса вместо а-метилстирола подавать стирол, то получаются смешанные а-метилстирол-бутадиен-стирольные термоэластопласты [42]. [c.286]

    Методом последовательной полимеризации мономеров можно осуществить синтез бутадиен-а-метилстирольных термоэластопластов также и на дилитиевых соединениях [11, 16, 17]. В этом случае вначале проводят полимеризацию бутадиена в углеводороде до получения полибутадиенового блока с двумя активными концами. Затем в реакционную смесь вводят а-метилстирол и полярную добавку (например, тетрагидрофуран, диметоксиэтан и др.), и полимеризация продолжается до образования трехблочного сополимера. [c.286]

    Балансовый метод определения потребности народного хозяйства в тех или иных химических продуктах основан на знании конечных показателей разв.ития народного хозяйства за планируемый период. Например, потребность в синтетических каучуках определяется исходя из планируемого производства резиновых изделий (шины, технические и бытовые изделия, обувь и т. д.). Объем производства резиновых изделий, в свою очередь, зависит от темпов развития, намеченных для потребителей резины. По выявленной потребности в синтетических каучуках и резиновых изделиях можно определить потребность в исходных углеводородах для синтеза каучуков (бутадиен, стирол, изопрен и др.), химикатах-добавках для резины и других продуктах. По общей потребности в химикатах — добавках для резины выявляют потребность в исходных промежуточных продуктах для их производства (анилин, нитробензол, дифениламин и др.). [c.25]


Смотреть страницы где упоминается термин бутадиен синтез: [c.545]    [c.545]    [c.60]    [c.451]    [c.78]    [c.272]    [c.379]    [c.259]    [c.363]    [c.176]    [c.423]    [c.433]   
Основы органической химии Часть 1 (2001) -- [ c.106 , c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетальдегид в синтезе бутадиена

Бутадиен Бутилен, в синтезах

Бутадиен Дивинил промышленный синтез

Бутадиен Дивинил синтез

Бутадиен в диеновом синтезе

Бутадиен в синтезе ионитов

Бутадиен дивинил в продуктах синтеза

Бутадиен методы синтеза

Бутадиен получение, синтез Лебедева

Бутадиен трет-Бутилфенол, синтез

Бутадиен, диеновые синтезы Остромысленского

Бутадиен, диеновые синтезы бутандиола

Бутадиен, диеновые синтезы растворе

Бутадиен, диеновые синтезы родана

Бутадиен, диеновые синтезы светильном газе

Бутадиен, диеновые синтезы сероводорода

Бутадиен, диеновые синтезы серой ы аммиаком

Бутадиен, диеновые синтезы тио крезола

Бутадиен, диеновые синтезы эмульсии

Бутадиен-метилстирольный каучук синтез

Бутадиен-стирольные каучуки СКС синтез

Бутадиен-стирольный в синтезе ксилола

Дивинил бутадиен синтез Реппе

Катализаторы синтеза бутадиена по Реппе

Лебедева промышленный синтез бутадиена

Лебедева синтез бутадиена

Направления реакций разложения и конденсации. Структурная теория реакций и ее применение к синтезу бутадиена по С. В. Лебедеву и к пиролизу углеводородов по Ф. Райсу

Остромысленского метод синтеза бутадиена

Получение бутадиена из спирта и другими методами синтеза

Реакторы синтеза бутадиена

Реппе синтез бутадиена

Синтез ализарина бутадиена

Синтез бутадиен-стирольного и бутадиен-метилстирольного каучуков

Синтез бутадиена по Лебедеву. Дегидрирование олефинов Дегидратация 1,4-бутандиола. По реакции Принса Химические свойства 1,3-диенов

Синтез бутадиена-1,3 и изопрена

Синтез бутадиена-1,3 по способу С. В. Лебедева и дегидрированием н-бутана синтез изопрена из изопентана

Синтез винилароматических углеводородов из димера бутадиена

Синтезы с использованием ацетилена под давлением . Синтез бутадиена по Реппе

Тетрагидрофурановый метод синтеза бутадиена

Этанол Этиловый спирт, Винный в синтезе бутадиена

Этилен образование при синтезе бутадиена

Этиловый спирт Этанол в синтезе бутадиена



© 2024 chem21.info Реклама на сайте