Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучуки кристаллизация

    Бутилкаучук относится к кристаллизующимся каучукам. Кристаллизация наблюдается при большем относительном удлинении, чем у НК. По внешнему виду каучук представляет собой прозрачную эластичную массу белого или серого цвета, не имеет вкуса и запаха. [c.101]

    В противоположность переходу в стеклообразное состояние, при котором происходит замораживание аморфной структуры каучука, кристаллизация сопровож- [c.112]


    При различных температурах. Форма кривых аналогична форме соответствующих кривых для каучука (рис. 6.2), только в данном случае шкала времен значительно короче. С понижением температуры ниже температуры плавления полимера скорость кристаллизации начинает быстро возрастать, а при 115°С она настолько велика, что наблюдать за процессом становится невозможно. Форма этих кривых, а также характер зависимости от температуры указывают на то, что, как и в случае каучука, кристаллизация протекает на зародышах и что скорость зародышеобразования — наиболее существенный фактор в этом процессе. По аналогии с каучуком предполагается также, что по мере понижения температуры скорость сначала возрастает, потом достигает максимального значения и далее начинает падать. Однако это только предположение, поскольку до сих пор не было возможности проверить это экспериментально при низких температурах. [c.143]

    В случае вулканизованного каучука кристаллизация, возникающая при удлинении до нескольких сотен процентов, может быть обратимой при разгружении . [c.12]

    Повышение внешнего давления увеличивает скорость кристаллизации [24]. Тиссен и Кирш [131, 132] показали, что у натурального каучука кристаллизация при 0°С и давлении от 10 до 30 бар происходит значительно скорее, чем при атмосферном давлении. [c.97]

    При охлаждении полидиметилсилоксановый каучук кристаллизуется быстрее натурального каучука. Кристаллизация его наблюдается в интервале —60 —67° С [54], а температура стеклования равна —123° С, что значительно ниже, чем у органических полимеров. [c.578]

    Кристаллизационные явления в каучуках и резинах. Способность кристаллизоваться в той или иной мере присуща большинству эластомеров. Лишь каучуки с наименее регулярной структурой цепи (бутадиен-стирольные, бутадиен-нитрильные, натрий-бутадиеновый и некоторые другие) не способны к кристаллизации. [c.46]

    Сополимеры способны кристаллизоваться в меньшей степени, чем гомополимеры, поэтому введение модифицирующих звеньев является одним из путей расширения температурного интервала использования эластомеров. Степень блочности цепей оказывает большое влияние на способность сополимеров к кристаллизации последнее можно наблюдать, например, в случае каучука СКЭП. [c.47]

    Структура резин. Вулканизация уменьшает способность полимеров кристаллизоваться, причем в тем большей степени, чем выше густота сетки. Влияние густоты сетки на скорость кристаллизации выражено значительно сильнее в случаях ди- либо полисуль-фидных поперечных связей, чем для С—С и моносульфидных связей, В некоторых случаях, однако, влияние как густоты сетки, так и нерегулярности цепи на кристаллизуемость каучуков и резин может быть более сложным. [c.47]


    На рис. 2 приведены кривые напряжение — деформация (о —X) для трех сажевых смесей, полученных на основе различных каучуков. Как видно из рисунка, при растяжении смеси на основе бутадиен-нитрильного каучука наблюдается постепенный рост напряжений и некоторый спад перед разрывом смеси такой вид кривой о — X является типичным для некристаллизующихся каучуков. Сравнительно высокий уровень напряжений объясняется полярностью полимерных цепей бутадиен-нитрильного каучука и, соответственно, повышенным взаимодействием сажа — каучук. Для смеси на основе НК при 200—300% растяжения наблюдается вторая, более крутая ветвь увеличения напряжения, связанная с развитием процесса кристаллизации каучука поэтому разрыв наступает при высоком напряжении. В то же время для синтетического ис-полиизопрена, по содержанию цис-1,4-звеньев близкого к НК, имеет место течение смеси п разрыв происходит при низких напряжениях. [c.74]

    Все углеводородные каучуки отличаются небольшой собственной энергией когезии, а также малой энергией взаимодействия с сажей. Поэтому когезионная прочность сажевых смесей на основе таких каучуков в отсутствие процессов кристаллизации также мала. [c.75]

    Большинство каучуков при вулканизации в отсутствие наполнителей дают резины, имеющие относительно низкие значения прочности, величина которой зависит от энергии когезии полимера и его способности к кристаллизации. После введения активных наполнителей прочность, модуль, износостойкость и другие показатели резин возрастают, но уменьшается их эластичность (табл. 3). [c.84]

    С увеличением степени кристалличности прочность полимеров увеличивается. Однако при синтезе эластомеров представляет интерес создание только такой структуры цепи, при которой и скорость, и степень кристаллизации в области обычных температур не очень велики, так как в противном случае материал быстро теряет эластичность при понижении температуры. Таким образом, особенность строения эластомерных цепей состоит в том, что кристаллизация их должна происходить только при растяжении полимера, Перечисленные выше каучуки регулярного строения при комнатных температурах являются практически полностью аморфными. [c.85]

    Как следует из данных табл. 4, предел прочности при растяжении при 100 °С для ненаполненных резин, получаемых на основе некоторых каучуков регулярного строения, выше, чем для наполненных резин на основе некристаллизующихся каучуков. Это объясняется тем, что в условиях неравновесного деформирования происходит кристаллизация каучука. Образующиеся при этом физические узлы (кристаллиты) достаточно стабильны до 100°С и выше, что и вызывает увеличение прочности резин. [c.88]

    Введение высоких дозировок сажи в быстро кристаллизующиеся при растяжении каучуки обычно снижает эффект упрочнения резин за счет кристаллизации. [c.88]

    Каучуки регулярного строения имеют, как правило, низкие температуры стеклования. Вместе с тем их способность к кристаллизации осложняет эксплуатацию резин на основе этих каучуков при низких температурах, так как температура максимальной скорости кристаллизации обычно находится значительно выше температуры стеклования (см. гл. 2). [c.91]

    Степень сохранения эластических свойств резин на основе кристаллизующихся каучуков зависит от того, насколько глубоко развивается процесс кристаллизации данного каучука при данной температуре. [c.91]

    Полибутадиены с высоким содержанием ц с-1,4-звеньев (более 96%) характеризуются значительной склонностью к кристаллизации, что существенно ухудшает морозостойкость вулканизатов. Один из способов повышения морозостойкости указанных каучуков— введение в полимерную цепь некоторого количества (5—15%) чужих звеньев. Это может быть достигнуто путем сополимеризации бутадиена с изопреном [53] или 1,3-пентадиеном [54]. [c.183]

    ЯМР [16], электронно-микроскопического [17]. Установлено, что даже незначительная доля структурных неоднородностей в каучуке оказывает большое влияние на скорость и степень кристаллизации полимера. Полупериод кристаллизации возрастает почти на порядок с уменьшением содержания ис-1,4-звеньев от 98 до 95%, а температура плавления кристаллов изменяется пропорционально изменению содержания 1,4-звеньев в этих пределах [14]. Скорость образования кристаллов в полимерах, содержащих 10% гранс-звеньев, на три порядка меньше величины, характерной для полиизопрена, состоящего исключительно из цис- [c.204]

    Литиевый полиизопрен не кристаллизуется в недеформированном состоянии. Он характеризуется очень малой способностью к кристаллизации и при растяжении с заметной скоростью кристаллизация происходит лишь при больших относительных удлинениях способность этого каучука к кристаллизации была установлена по эффекту Джоуля. Более высокая регулярность построения макромолекул титанового полиизопрена обусловливает способность этого каучука к кристаллизации как в условиях деформации, так и при понижении температуры. Однако кристалличность его ориентированных вулканизатов несколько меньше, чем вулканизатов НК при любых (одинаковых) деформациях и температурах [15, 19], а температура плавления ниже (-7- 2 "С по сравнению с 4-f- 11°С у НК). Кристаллическая решетка синтетического полиизопрена является моноклинной и имеет такие же параметры, как и решетка НК. [c.205]


    Титановый полиизопрен состоит из золь- и гель-фракций. В серийном каучуке, полученном в алифатических растворителях, средняя молекулярная масса золь-фракций равна (1,2-ь1,5) 10 , а содержание гель-фракции составляет 20—30%- При использовании ароматических растворителей содержание геля ниже и он характеризуется более рыхлой структурой. Под влиянием сдвиговых напряжений, возникающих в процессе технологической обработки каучука, гель-фракция с рыхлой структурой может полностью разрушаться. Плотный гель остается в полимере и ведет себя как наполнитель. Сам по себе плотный гель кристаллизуется быстрее, чем исходный каучук и золь-фракция, в то же время с повышением содержания гель-фракции в каучуке полупериод кристаллизации его вначале уменьшается, а затем возрастает. Такой характер влияния геля объясняется, с одной стороны, ускорением образования зародышей кристаллов и, с другой стороны, уменьшением подвижности цепей и нарушением их структуры при большом содержании геля [23]. [c.207]

    Однако не только кристаллизация, по-видимому, способствует повышению когезионной прочности резиновых смесей. Например, наполненные смеси на основе карбоксилсодержащего изопренового каучука — содержание карбоксильных групп не выше 0,25% (мол.) —обладают высокой когезионной прочностью из-за развития ориентационных эффектов, но не обнаруживают кристаллических рефлексов при растяжении вплоть до разрыва. Увеличению [c.234]

    Масло- и морозостойкость акрилатов зависит от величины алкильного радикала. При к = 2 наблюдается более высокая удельная плотность энергии когезии и, как следствие, высокая маслостойкость и малая морозостойкость. С увеличением длины алкильного радикала падает маслобензостойкость, повышается морозостойкость, увеличивается липкость и ухудшается обрабатываемость полимеров. При Сд и выше наблюдается кристаллизация полимеров [2]. Замена акрилата на соответствующий метакрилат приводит к получению более жестких сополимеров, что объясняется вдвое большей удельной плотностью энергии когезии группы СНз — по сравнению с группами —СНг— или —СН— [3, гл. 1П]. В связи с получением полимеров с более высокой температурой стеклования метакрилаты не применяются в качестве основных мономеров для получения акрилатных каучуков, а используются только при получении пластиков. Низшие алкил-акрилаты и метакрилаты представляют большой интерес для синтеза пленкообразующих латексов [4]. [c.387]

    Каучук СКФ-260 мало склонен к кристаллизации и обладает температурой стеклования на 18—20°С ниже, чем каучуки типа СКФ-26. Указанные преимущества по морозостойкости проявляются и в поведении резин. Если сравнить температуры, при которых указанные резины имеют одинаковые коэффициенты морозостойкости (например, 0,1), то для СКФ-26 эта температура — 16°С, а для СКФ-260 —33 °С. Резины на основе СКФ-260 работоспособны при —30 °С. Так как температура хрупкости стандартных резин составляет —53-=--57 °С, то в отдельных случаях [c.518]

    В последнее время эта точка зрения была опровергнута открытием единичных микрокристаллов высокомолекулярных соединений, и сейчас можно утверждать, что любой полимер, способный к кристаллизации, может быть получен в виде единичных кристаллов . Было найдено, что кристаллизации полимеров предшествует упорядочение аморфных полимеров, т. е. тозник-новение аморфных надмолекулярных структур. Достаточно высокая в ряде случаев скорость кристаллизации полимеров подтверждает наличие предварительной упорядоченности макромолекул полимера в аморфном состоянии. Надмолекулярная структура аморфных каучуков характерна наличием пачек цепей, при слиянии которых образуются полосатые структуры каучуков. Кристаллизация происходит сначала в пределах пачек, а затем идет постепенно дальнейшее упорядочение кристаллизованных пачек. [c.85]

    В зависимости от того, при какой температуре длитшьно выдерживать каучук, кристаллизация протекает с различной скоростью. [c.163]

    Типичные кривые, взятые из данных Филда, показаны на фиг. 77. Как в невулканизованном, так и в вулканизованном каучуке кристаллизация начинается в области растяжения от 200 до 300% и в максимуме кристаллизация достигает около 80%. Позднее Геман и Филд [42] показали, что степень кристалличности возрастает с увеличением молекулярного веса каучука перед [c.161]

    Как известно, полимеры регулярного строения способны кристаллизоваться как при охлаждении, так и при растяжении [5]. Для получения когезионнопрочных смесей необходимо, чтобы скорость кристаллизации при растяжении (в области обычных температур) не была бы очень низкой. Так, например, смеси на основе стереорегулярного 1,4-полибутадиена — кристаллизующегося каучука — имеют низкую когезионную прочность из-за недостаточной скорости кристаллизации этого каучука при растяжении смеси. [c.75]

    Важную роль в процессах усиления невулканизованных резиновых смесей за счет кристаллообразования играют факторы, обуславливающие появление начального ориентационного эффекта, после чего процесс кристаллизации развивается лавинообразно появление такого эффекта при растяжении связано с образованием стабильных связей каучук — каучук или сажа — каучук [6]. Увеличение молекулярной массы и введение полярных групп в полимерные цепи, находящиеся в сажекаучуковой матрице, увеличивают количество связей и ускоряют развитие процесса кристаллизации именно за счет создания ориентационного эффекта соответственно, увеличивается когезионная прочность смесей. Это положение иллюстрируется данными, приведенными на рис. 3, где представлены кривые напряжение — деформация для 3-х смесей, полученных на основе одного и того же каучука — полиизопрена с высоким содержанием цыс-1,4-звеньев, но приготовленных различным способом на вальцах в условиях, обеспечивающих отсутствие процессов механохимической деструкции наконец, на вальцах в присутствии модификатора (промотора), усиливающего взаимодействие сажа —каучук. [c.75]

    Известно, чтй ряд каучуков при серной вулканизации Дак)Т ненаполненные резины с высокой прочностью. Это —каучуки регулярного строения, способные к кристаллизации НК, синтетический полиизопрен с высоким содержанием г ис-1,4-звеньев, некоторые типы этилен-пропилен-диеновых каучуков, транс-полипентена-мер, полихлоропрен и др. При растяжении резин на основе этих каучуков образуются микрокристаллиты, которые играют роль полифункциональных узлов сетки по-видимому, их действие сходно с действием частиц активного наполнителя. Действительно, нарастание напряжения при растяжении резин, полученных на основе кристаллизующихся каучуков, происходит быстрее, чем при растяжении резин на основе аморфных каучуков, имеющих равную плотность узлов вулканизационной сетки [35]. [c.85]

    Микроструктура полиизопрена оказывает решающее влияние на физико-механические свойства резин на его основе. Прочность ненаполненных вулканизатов минимальна при суммарном содержании 1,2- и 3,4-звеньев 20—60% (рис. 3) [13]. Скачок на кривой (см. рис. 3) обусловлен прежде всего возможностью плотной упаковки регулярно построенных макромолекул и кристаллизации их в условиях деформации. Следует отметить, что полимеры с высоким содержанием 1,2- или 3,4-звеньев характеризуются очень малыми значениями эластичности (рис. 4). При содержя--нии 1,2- и 3,4-звеньев близком к 100% как каучук, так и вулканизаты на его основе сильно закристаллизованы. [c.203]

    Особенности кристаллизации СКИ, полученного с циглеров-ским катализатором, находят свое отражение при испытаниях на разрыв невулканизованных каучуков и резиновых смесей в условиях различных температур. Прочность образцов СКИ возрастает при более низких температурах, чем прочность НК [22]. [c.207]

    Исследование процесса кристаллизации модифицированного полиизопрена (каучука СКИ-ЗМ) дилатометрическим методом [14, с. 109—127] показало, что введение даже небольшого количества полярных атомов и групп (до 1,5%) снижает скорость кристаллизации. В то же время модификация полиизопрена структурирующим агентом нитрозаном К вследствие возникновения слабых химической и физической сетки в определенных условиях способствует ускорению кристаллизации полиизопрена. Действительно, в дальнейшем при рентгенографическом изучении кристаллизации при растяжении наполненных смесей НК, СКИ-3 и СКИ-3, модифицированного различными функциональными группами, было показано [21], что сажевые смеси на основе каучука СКИ-3 с функциональными группами при растяжении на 300—400% обнаруживают кристаллические рефлексы, аналогичные наблюдаемым для натурального каучука, в то время как смеси на основе каучука СКИ-3 не обнаруживают кристаллических рефлексов при растяжении до 1000%. Температура плавления кристаллитов модифицированного каучука СКИ-ЗМ составляет 50—60 °С (в зависимости от метода модификации), т. е. ниже, чем у кристаллитов натурального каучука (65°С), вследствие большей дефектности. Это исследование ярко иллюстрирует роль кристаллизации в возникновении когезионной прочности. Имеется четкая связь степени кристаллизации и прочности ненаполненных сополимеров этилена и пропилена в зависимости от содержания пропилена [22]. [c.234]

    Ковалентная вулканизация карбоксилсодержащих каучуков придает резинам свойства, аналогичные эластомерам без карбоксильных групп. Поэтому для карбоксилсодержащих каучуков важное значение приобретает вулканизация с помощью окисей, гидроокисей и других соединений металлов за счет реакции соле-образования. Получаемые при этом резины уже при относительно низком содержании звеньев метакриловой кислоты в сополимере (1—3%) характеризуются высокими механическими и эластическими свойствами. Рентгенографически в солевых резинах при растяжении обнаружен сильный ориентационный эффект. Тем самым установлено, что дефекты в структуре полимерной цепи, обусловленные неоднородностью ее строения, и отсутствие вследствие этого склонности к ориентации и кристаллизации, могут быть компенсированы за счет изменения природы вулканизационной сетки [1]. [c.400]

    Силоксановые каучуки кристаллизуются при более низких температурах, чем углеводородные, но скорость и глубина кристаллизации у них выше из-за высокой подвижности полимерных цепей. ПДМС быстро кристаллизуется - при температурах ниже —50 °С (с максимальной скоростью при —80 °С) и плавится при температурах выше —46 °С. Способность к кристаллизации снижается при замещении части метильных групп другими, причехч при одинаковом содержании модифицирующих групп (фенильных, этильных, пропильных и др.) скорость кристаллизации минимальна при их статистическом распределении и максимальна у блоксополимеров. Кристаллизация резко замедляется при введении в цепь уже 8—10% (мол.) статистически распределенных модифицирующих звеньев. Совсем не кристаллизуется метил (3,3,3-трифторпро-пил)силоксановый каучук. Введение в силоксановую цепь ариле-новых или карбораниленовых групп при их регулярном расположении повышает степень кристалличности и 7пл> а нерегулярно построенные сополимеры обычно аморфны. Как стеклование, так и кристаллизация силоксановых блоксополимеров при достаточной длине блоков происходит раздельно в каждом блоке при соответствующих гомополимерам температурах. Кристаллизация более высокоплавкого блока может не иметь места или происходит при температуре ниже обычной, если его длина мала [3, с. 19—20]. [c.484]

    Первые успешные попыткн получения высокофторированных каучуков были сделаны путем синтеза сополимеров винилиденфто-рнда [9]. В образующемся сополимере винилиденфторида с гекса-фторпропнленом или трифторхлорэтиленом метиленовые группы играют роль шарниров , придающих гибкость полимерной цепи, а большой объем атома хлора или трифторметильной группы препятствует кристаллизации. [c.503]


Библиография для Каучуки кристаллизация: [c.53]   
Смотреть страницы где упоминается термин Каучуки кристаллизация: [c.13]    [c.14]    [c.554]    [c.76]    [c.323]    [c.384]    [c.384]    [c.384]    [c.384]   
Физико-химия полимеров 1963 (1963) -- [ c.143 , c.145 ]




ПОИСК







© 2024 chem21.info Реклама на сайте