Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кис юта реакция с окисями олефинов

    Катализаторы, ускоряющие реакцию дегидратации спиртов до олефинов. катализируют и конденсацию спиртов с образованием эфиров. Однако реакции конденсации протекают при несколько более низких температурах. Наиболее пригодными катализаторами этой реакции являются серная кислота (жидкая фаза) и окись алюминия (твердая фаза). В случае ароматических спиртов нельзя в качестве катализатора применять серную кислоту, поскольку она сульфирует ароматические соединения. Типичными условиями конверсии этилового спирта в диэтиловый эфир является температура 240, в то время как образование этилена протекает при 300 [688, 689]. Для превращения высших спиртов в эфиры требуются более мягкие условия. Так, превращение алш.лового спирта катализируется сульфатом алюминия. [c.194]


    Окись алюминия, фосфорная кислота, окись тория, алюмосиликат катализируют реакцию изомеризации углеродного скелета. Силикагель и активированная окись алюминия вызывают перемещение двойной связи. Серная кислота, хлористый алюминий и другие катализаторы наряду с изомеризацией углеродного скелета вызывают полимеризацию олефина. [c.132]

    Лабораторные способы получения олефинов в большинстве своем являются реакциями отщепления. Важнейший из этих способов— дегидратация спиртов (отнятие воды). При нагревании спиртов с водоотнимающими веществами (концентрированная серная или фосфорная кислоты) или пропускании паров спиртов над такими катализаторами как каолин, окись алюминия, окись тория, при повышенной температуре идет отщепление воды. Так из этилового спирта получается этилен  [c.67]

    По сути дела к последнему типу относится и алкилирование алканов— реакция, в которой выброс протона осуществляется труднее и требует участия агента, способствующего этому отщеплению. Так, при действии олефина в присутствии жидкого фтористого водорода на алканы реакция протекает через стадию образования алкил-катиона (присоединение протона олефином). Этот катион алкилирует третичный или вторичный углерод в алкане, от которого НР уводит протон в виде [НгР] Алкил-катионы способны присоединять окись углерода (реакция Коха). Эта реакция осуществляется действием на раствор олефина в серной или другой сильной кислоте непосредственно окисью углерода или (как это делал Кох вначале) муравьиной кислотой, разлагающейся по уравнению  [c.528]

    Алкил-катионы способны присоединять окись углерода (реакция Коха). Эта реакция осуществляется действием на раствор олефина в серной или другой сильной кислоте непосредственно окисью углерода или (как это делал Кох вначале) муравьиной кислотой, разлагающейся по уравнению  [c.582]

    Практически все важнейшие химические производства пользуются катализаторами. Для получения серной кислоты применяют катализатор, содержащий сульфат ванадия этот катализатор ускоряет окисление сернистого ангидрида в серный. Для производства водорода из водяного газа применяют окись железа, активированную окисью хрома, — ускоряется реакция СО + Н2О = СО2 + Н2. Синтез аммиака хорошо идет на катализаторах, представляющих собой плавленую и активированную окислами калия и алюминия окись железа, причем в процессе работы окись железа переходит в металлическое железо. На смешанном катализаторе, состоящем из окислов цинка и хрома, получают метиловый спирт из водорода и окиси углерода. Окислы меди и цинка применяют для гидрогенизации и дегидрогенизации, фосфорная кислота на кизельгуре идет для производства бензина из олефинов и т. д. [c.437]


    Топчиев, Кренцель, Перельман [40] обсуждают механизм реакции полимеризации олефинов на окисных катализаторах, в качестве которых применяются главным образом окислы металлов переменной валентности V— VIII групп периодической системы на носителях (алюмосиликаты или окись алюминия).Алюмосиликаты оказывают сами каталитическое действие, аналогичное действию серной, фосфорной и других сильных кислот. Существенную роль играет валентность металла в окисле. Окислы хрома, молибдена, вольфрама, урана имеют несколько степеней окисления. В высших окислах металлические ионы не содержат непарных электронов, характерных для более низкой валентности. Такие окислы металлов с незаполненной электронной оболочкой являются электронными акцепторами, что, по-видимому, способствует повышению их эффективности. Электроны, отданные катализатору, возвращаются в процессе полимеризации, результатом чего является понижение энергии системы в целом  [c.181]

    Реакции кислот и ангидридов. Ортофосфорная кислота взаимодействует с гидроксилсодержащими соединениями при температуре выше 100 °С под давлением, образуя смесь первичных и вторичных фосфатов (механизм этой реакции см. на стр. 551). Такая же смесь получается и по реакции ортофосфорной кислоты с олефинами при высоких температурах под давлением и в присутствии катализаторов (серная кислота, окись меди, сернокислое серебро и др.) При участии некоторых карбодиимидов органофосфоно-вые кислоты вступают в реакцию со спиртами или фенолами, давая через промежуточную стадию образования пирофосфоновой кислоты моноэфиры фосфоновых кислот . [c.405]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]

    Синтез карбоновых кислот из олефина, воды и окиси углерода, вероятно, может рассматриваться как родственный процесс ацилирования олефинов ангидридами кислот. Хотя окись углерода получается дегидратацией муравьиной кислоты (лучше в присутствии серной кислоты) и может быть превращена в муравьиную кислоту гидратацией через натриевую соль (полученную нагреванием окиси углерода с едким натром под давлением при 200°), она редко ведет себя как ангидрид. Одним из путей, объясняющих синтез карбоновых кислот из олефинов, является допущение атаки окиси углерода ионом карбония и последующей гидратации получающегося. ацилониевого иона. В случае пропионовой кислоты механизм реакции мог бы [c.125]


    Э.— ненасыщенное чрезвычайно реакционноспособное соединение. Для него наиболее характерны реакции присоединения и полимеризации. По двойной связи к Э. присоединяются водород, галогены (трудность присоединения возрастает в ряду С1, Вг, I), галогеноводороды (легче всего HI, труднее НС1). С водными р-рами галогенов Э. образует галогенгидрины, с водой — этиловый спирт. Э. взаимодействует с сильными к-тами, напр, серной и гипохлорной, и не реагирует со слабыми к-тами и аммониевыми соединениями. Он чувствителен к действию окислителей. Окись этилена можно получить, напр., окислением Э. в газовой фазе воздухом в присутствии серебра. При взаимодействии Э. с металлоорганич. соединениями (гл. обр. с алюминийалкилами) м. б. синтезированы высшие сс-олефины, спирты, карбоновые к-ты и изопентан. Э. самопроизвольно не полимеризуется. [c.501]

    Фтористый водород обладает способностью катализировать органические реакции различного типа. Поэтому известные в настоящее время реакции, катализируемые фтористым водородом, распределены по отдельным группам. Отнесение данной реакции к определенной группе не всегда может быть решено однозначно. Поэтому некоторые реакции читатель неожиданно для себя сможет найти не под тем заголовком, под которым он будет их искать. Фтористый водород катализирует многие реакции, в которых реагентом являются углеводороды. Под действием фтористого водорода целый ряд веществ вступает в реакцию с ароматическими углеводородами к таким веществам относятся олефины, галоидные алкилы, спирты, меркаптаны, эфиры, карбоновые кислоты, галоидангидриды кислот, сложные эфиры, серная кислота, азотная кислота, окись углерода и кислород. Алифатические углеводороды также служат реагентами в некоторых реакциях. Изопарафины являются более реак-ционноснособными соединениями, чем насыщенные парафины с прямой цепью, но даже последние реагируют при некоторых условиях. [c.229]


Смотреть страницы где упоминается термин Серная кис юта реакция с окисями олефинов: [c.300]    [c.472]    [c.52]    [c.582]    [c.431]    [c.502]    [c.255]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.563 ]




ПОИСК





Смотрите так же термины и статьи:

Олефины окиси

реакция с окисями олефинов



© 2024 chem21.info Реклама на сайте