Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции изомеризации, катализируемые кислотами

    Собственно метаболизм, т. е. совокупность химических реакций в живых организмах, является результатом действия ферментов. В клетке содержится большое количество различных веществ, которые находятся в постоянном взаимодействии. Причем, как правило, одно вещество участвует в немногих реакциях, а часто — только в одной. Например, первая реакция метаболического цикла лимонной кислоты (цикл Кребса) — конденсация ацетильного остатка (из ацетил-КоА) и щавелевоуксусной кислоты — приводит к образованию лимонной кислоты. Эта реакция катализируется ферментом цитратсинтазой. Следующая — реакция изомеризации лимонной кислоты в изолимонную — катализируется ферментом аконитазой и т. д. Следовательно, при отсутствии того или иного фермента невозможно образование промежуточных соединений этого цикла. Таким образом, ферментативный катализ в клетке служит инструментом отбора определенных реакций из множества возможных, такой целенаправленный отбор является важным этапом биологической эволюции. [c.121]


    Выбор катализатора риформинга определяется механизмом реакций, протекающих на нем. Реакции гидрирования и дегидрирования протекают по окислительно-восстановительному механизму и катализируются металлами, реакции изомеризации и гидрокрекинга протекают по ионному механизму и катализируются кислотами. Поэтому, в каталитическом крекинге используются бифункциональные катализаторы состава Ме -Ь -ЬА120з , где Ме = молибден, платина, рений, А12О3 — катализатор изомеризации, промотируемый фторидами или хлоридами металлов, являющийся одновременно носителем. [c.144]

    Реакции изомеризации катализируются кислотами. Поскольку гидрокарбонил кобальта является сравнительно сильной кислотой, рассмотренные выше [c.265]

    Соединения фосфора катализируют процессы кислотно-основного типа реакции изомеризации, полимеризации, присоединения, замещения и разложения. Катализаторами служат главным образом пятиокись фосфора, фосфорные кислоты и их производные. Применение таких соединений, как производных фосфина, сульфидов, галогенидов и оксигалогенидов фосфора, ограничивается небольшим кругом реакций, протекающих в жидкой фазе при температурах, в основном не превышающих 100° С. [c.463]

    Прототропия. Равновесная изомерия кетон г енол рассматривалась долгое время как истинная внутримолекулярная перегруппировка, т.е. как реакция, в которой атом водорода мигрирует из одного положения молекулы в другое без разрыва его ковалентной связи с атомами молекулы. То, что кето-енольная изомеризация катализируется кислотами и основаниями (и, вероятно, происходит в отсутствие последних только в той степени, в которой субстрат как таковой действует как кислота или основание) указывает, однако, на механизм, в котором катализатор и субстрат играют последовательно роль доноров или акцепторов протонов, точно так же, как в описанных выше реакциях кетонов. Таким образом, при основном катализе промежуточно образуется сопряженный анион субстрата  [c.94]

    Различные свободные радикалы, которые образуются в реакциях (33)—(35), могут быть причиной самых различных реакций, часто приводящих к изомеризации, полимеризации и т. п. В ионных средах реакции могут катализироваться кислотами или щелочами и протекать частично или полностью за счет ионных механизмов. [c.67]

    Кислотно-основные катализаторы. В соответствии с теоретическими представлениями, изложенными в главе I, твердые кислоты и основания катализируют гетеролитические превращения. В частности, гетерогенные катализаторы кислотного типа применимы для ускорения реакций изомеризации, крекинга, полимеризации [c.152]


    Реакции гидрирования — дегидрирования относятся к типу окислительно-восстановительных и катализируются металлами и их соединениями, ускоряющими перенос электрона. Изомеризация протекает по ионному механизму и катализируется кислотами и кислыми окислами. [c.254]

    Реакции алкилирования, кроме того, могут катализироваться сильными кислотами типа фтористого водорода, серной кислоты, сульфоновых и фосфорных кислот, в присутствии этих несомненно кислотных катализаторов протекают многие реакции изомеризации, и поэтому они широко применяются в нефтяной промышленности для проведения перегруппировок. В присутствии хлоридов металлов в качестве катализаторов изомеризация протекает легче с галоидными солями алюминия, чем с галоидными солями железа или галлия, и поэтому последним двум катализаторам отдают предпочтение при исследовании механизма реакции. [c.80]

    Промотированные хромовые катализаторы. В табл. 9 представлены результаты исследований серии хромовых катали.чато-ров в реакциях превращения к-гептана и циклогексаиа. Чистая окись хрома, приготовленная в виде геля обработкой хромовой кислоты изопропиловым спиртом, обладает кислотными свойствами, что подтверждается ее способностью катализировать при температуре 482° реакцию изомеризации к-гептана с образованием гептанов изостроения в количестве 11% мол. [c.493]

    Окись алюминия, фосфорная кислота, окись тория, алюмосиликат катализируют реакцию изомеризации углеродного скелета. Силикагель и активированная окись алюминия вызывают перемещение двойной связи. Серная кислота, хлористый алюминий и другие катализаторы наряду с изомеризацией углеродного скелета вызывают полимеризацию олефина. [c.132]

    Аллильные бромпроизводные изомеризуются так легко, что трудно получить чистые образцы несимметрично замещенных бромпроизводных. В литературе имеется много сообщений о том, что чистые (вероятно) бромпроизводные подвергаются изомеризации при нагревании или при выдержке при комнатной температуре [190—193]. Бромистоводородная кислота [194] и соли одновалентной меди [195—197] катализируют реакцию изомеризации, и бромистый водород в присутствии перекиси вызывает специфическую быструю изомеризацию [198, 199], которая, по-видимому, происходит по свободно-радикальному цепному механизму [200]. Следы бромистого водорода и перекисей, образующиеся при реакциях гидролиза и окисления, очень трудно исклю- [c.434]

    Они катализируют те же реакции, что и кислоты в случае гомогенного катализа реакции изомеризации, дегидратации и гидратации, алкилирование, крекинг и т. п. [c.83]

    Следует отметить, что не все биохимические процессы, итогом которых является изомеризация, катализируются изомеразами. Так, изомеризация лимонной кислоты в изолимонную происходит при участии лиазы, катализирующей реакции гидратации аконитовой кислоты и дегидратации лимонной и изолимон-ной кислот, — аконитаза или цитрат (изоцитрат) гидролиаза  [c.149]

    Согласно принятой классификации все ферменты разделяются на следующие шесть главных классов оксидоредуктазы, катализирующие окислительно-восстановительные реакции трансфер а з ы, катализирующие реакции межмолекулярного переноса алкильных, ацильных, альдегидных, кетонных и других групп, а также азот-, фосфор- и серосодержащих остатков гидролазы, катализирующие реакции гидролитического (с участием воды) расщепления белков, жиров, углеводов и нуклеиновых кислот л и азы, катализирующие отщепление (не гидролитическим путем) отдельных групп с образованием двойной связи или присоединение группы к двойной связи изомеразы, катализирующие реакции изомеризации, т. е. реакции, связанные с внутримолекулярным переносом различных атомов и групп лигазы (синте-тазы), катализирующие присоединение друг к другу двух молекул. [c.61]

    Высшие гомологи аллилового спирта могут быть изомеризованы подобным же образом, однако при этом необходимы более жесткие условия. Классическим примером является взаимная изомеризация двух природных аллиловых спиртов — третичного линалоола и первичного гераниола — кипячением с водой при 200° (см. том II, Терпены ). Изомеризация аллиловых спиртов катализируется кислотами. На практике эту реакцию осуществляют нагреванием аллилового спирта с уксусным ангидридом в присутствии сильной кислоты, например трихлоруксусной. Перегруппированные спирты получаются в виде эфиров уксусной кислоты, как видно из следующего примера (К. Димрот, 1938 г.)  [c.469]

    Изомеразы — ферменты, катализирующие реакции изомеризации. К ним, в частности, относятся такие ферменты, как мутаротаза, катализирующая реакцию мутарота-ции — превращения а-глюкозы в р-глюкозу акоиитаза, катализирующая изомеризацию лимонной кислоты в изолимонную кислоту, и ряд других. Однако наряду с групповой специфичностью есть ферменты, обладающие абсолютной специфичностью. Уреаза способна разрушать только мочевину и больше ничего мальтаза из проростков ячменя действует только на мальтозу и неактивна к другим а-глюкозидам аргиназа действует на [c.252]


    Согласно этому механизму концентрация щелочи не влияет на скорость реакции. Однако зависимость, которую в действительности наблюдают, можно объяснить в рамках этой же схемы, если допустить, что реакция изомеризации катализируется ионом гидроксила. Это предположение весьма обосновано, так как известно, что аналогичные процессы типа кето-енольной таутомерии очень чувствительны к катализу основаниями. Подобный двустадийный процесс был предложен Ганчем для многих других реакций нейтрализации, сопровождающихся изменением в спектрах поглощения, даже если эти реакции протекают практически мгновенно. В конце концов Ганч был вынужден рассматривать любую кислоту как псевдокислоту, руководствуясь малыми оптическими изменениями при ионизации [15]. Такое расширение смысла термина свело на нет его полезность, и лишь немногие авторы следовали Ганчу. [c.20]

    Заключение. Важ1ным преимуществам карбониевоионного механизма является то, что он дает общее основание для большого числа реакций углеводородов, включая полимеризацию алкенов, алкилирование алканов [48, 80] и ароматических углеводородов [49] и изомеризацию алканов [50]. Его основным недостатком является то, что не представляется возможным предсказать, какой из нескольких возможных изомеров будет получен фактически. Против этого меха1низма было сделано также возражение [51], что ее все реакции полимеризации катализируются кислотами было отмечено, что димеризация может иметь место и в отсутствие протона, например в случае полимеризации дифени-лена хлорным оловом или а-метилстирола натрием. Однако, как [c.90]

    В повздении некоторых парафинов в присутствии серной кислоты наблюдается положение, несколько напоминающее случай с неопентаном. Изомеризация при помощи серной кислоты подробно обсуждается ниже. Здесь достаточно сказать, что серная кислота особенно в мягких условиях склонна катализировать только такие реакции изомеризации, которые можно рассматривать как внутримолекулярный переход водорода между третичными атомами углерода, исключая вторичные и первичные атомы. Образование продуктов, получающихся при применении в качестве катализаторов хлористого или бромистого алюминия, можно удовлетворительно объяснить внутримолекулярным переходом водорода между третичными и вторичными, но не первичными атомами углерода. Приведем пример. В присутствии серной кислоты легко устанавливается равновесие между 2- и 3-метилпентанами, причем 2,2-диметилбутан отсутствует, хотя термодинамически он является более выгодным изомером и преобладает, когда равновесие устанавливается на хлористом алюминии как катализаторе. [c.26]

    При платформинге интенсивно протекают реакции изомеризации парафинов и нафтенов и гидроизомеризации олефинов. Это вызвано тем, что катализаторы нлатформинга относятся к числу так называемых нолифункциопальных (бифункциональных) катализаторов они катализируют одновременно реакции, протекающие по катионному механизму, свойственные кислым катализаторам, и реакции гидрирования-дегидрирования, характерные для металлических и окиснометаллических катализаторов. Бифункциональный катализатор состоит из алюмосиликата (нлн активированной кислотами окиси алюминия), содержащего небольшое количество одного из металлов VIII группы (Р1, Р(1, N1 г( др.). При умеренных темнературах порядка 300—350° С среди реакций, происходящих над бифункциональными катали-зато])ами нод давлением водорода, преобладают реакции изомеризации. [c.493]

    Изомеризация первоначально образующегося нитрозосоеди-нения в соответствующий оксим - реакция, характерная для всех алифатических нитрозосоединений, содержащих нитрозогруппу у первичного или вторичного атомов углерода. Ее катализируют кислотами, основаниями, полярными растворителями, нагреванием. Считается, что эта реакция необратима. [c.258]

    Изомеризация парафинов. Главное практическое применение реакции изомеризации парафинов получили в нефтяной промышленности для превра-ш.ения нормального бутана в изобутан, а также для изомеризации пентановой и гексановой фракций в продукты с высоким содержанием изомеров с разветвленной цепью. Хотя сами по себе эти практические применения реакций изомеризации не представляют особого интереса для химика-органика, однако с.иедует отметить, что эти реакции протекают обратимо по уравнению первого порядка и в интервале от низких до умеренных температур (20—150°) приводят к образованию более разветвленных и более компактных молекул. Катализирующий эти превращения хлористый алюминий можно наносить на боксит или другие носители. Его можно также применять в виде илистого шлама или в растворе плавленой треххлористой сурьмы для проведения процесса в жидкой фазе. В качестве катализаторов применяют также бромистый алюминий, фтористый бор в сочетании с фтористым водородом [471] и серную кислоту. [c.162]

    Пайне с сотрудниками [18] изучил ряд гомогенных и гетерогенных реакций, катализируемых основаниями (алкоголятами, бензилнатрием и др.), и пришел к выводу, что существуют классы реакций, которые катализируются преимущественно основаниями. Это—реакции изомеризации олефинов с перемещением двойной связи (как уже указывалось, скелетная изомеризация протекает на кислотах, а на основаниях не протекает), дегидрирование циклопарафинов и циклоолефинов и алкилирование олефинами алкилароматики в боковой цепи (в отличие от алкилирования в кольце на кислотах). [c.274]

    Так, элементарная сера в коллоидном состоянии [1—6], селен (порощкообразный или коллоидный раствор в парафине) [5, 26—30] в жидкой фазе и сернистый газ [11] в газовой фазе катализируют реакции 1 ис-/пранс-изомеризации. Жидкофазная изомеризация ненасыщенных кислот в присутствии серы и селена протекает при температурах 180—220° С, газофазная изомеризация бутена-2 под влиянием ЗОа — при 300—400° С при этом скорость изомеризации в присутствии сернистого газа в несколько раз меньше скорости изомеризации в присутствии N0 [11]. Тиомочевина и ее производные также способствуют изомеризации час-кислот в траке-кислоты. В случае малеиновой кислоты выход фумаровой под влиянием тиомочевины составляет 89% (при 50° С) [27]. Элементарные сера, селен и теллур [45], а также системы сера—антрахинон, сера — малеиновый ангидрид, сера — смоляное масло [c.514]

    Изученные примеры такой реакции — изомеризация 1-фепилаллиловых эфиров бензойной и ге-нитробензойной кислот, которые были исследованы детально с использованием в качестве апротного растворителя хлорбензола. При отсутствии кислот эти реакции мономолекулярны и слегка катализируются нейтральными солями [178, 179). Эксперименты с мечеными атомами показали, что при добавке меченого аниона он частично включается как в перегруппированный, так и в неперегруппированный продукт, в то время как ацильный кислород исходного вещества переходит в основном в алкильный кислород продукта перегруппировки. Далее реакция перегруппировки протекает быстрее, чем обмен в положении 3. Эти результаты отражены в схеме 7  [c.241]

    Тот факт, что изомеризация аллильных спиртов катализируется кислотами, наводит на мысль, что активными промежуточными соединениями являются сопряженные кислоты спиртов ROHJ. Присоединение гидроксильной группой протона ослабляет связь углерод — кислород, и поэтому нет необходимости в полном разделении противоположных зарядов в переходном состоянии на стадии, ограничивающей скорость реакции. Поэтому неудивительно, что оксониевый ион изомеризуется значительно легче, чем спирт, не присоединивший протон. Изомеризация сопряженной кислоты могла бы предположительно произойти по 5 2 механизму [c.428]

    Во многих случаях, фотохимическая изомеризация олефинов может быть вызвана облучением без применения катализаторов, если только применять сеет достаточно короткой длины волны, который активирует двойную связь. При изомеризации олефинов, катализируемой радикалами, требуется менее мощное облучение, чем в случае некаталитической фотохимической изомеризации. Так, для малеиновой кислоты длины волн света, необходимого для реакции, которая катализируется бромом, и для реакции, протекающей без катализатора, составляют соответственно 4360 и 3130А. [c.285]

    Впервые это явление отмечено в работах [119, 126], авторы которых выделили фумаровую кислоту гидролизом продуктов реакции спиртов с малеиновым ангидридом. Впоследствии многие авторы изучали цис-транс-тоиертатю при полиэтерификации, используя не только чисто химические методы анализа [6, 119,168], но и полярографию [169], ИК-спектроскопию [170] и метод ЯМР [171]. Найдено, что цис-транс-изомеризацию катализируют некоторые амины, галоиды и кислоты, причем роль катализатора могут играть протоны участвующих в полиэтерификации кислот и их [c.36]

    Поэтому реакция изобутилена, катализируемая основаниями, дает тот же димер, что и реакция, катализируемая кислотами, хотя механизмы реакций совершенно различны. Поскольку в этих условиях катализируются также реакции изомеризации олефинов, должно иметь место равновесное распределение продуктов например, реакция изобутилена дает 78% 2, 4, 4-триме-тилпентена-1 и 22% 2, 4, 4-триметилнентена-2. [c.374]

    В интервале pH 0—2 как изомеризация, так и раце мизация катализируются кислотой. Это указывает на то, что, кроме рассмотренных реакций, становятся важными и другие реакции, которые также вносят вклад в общую скорость пространственных изменений. Реакции гидролиза оксалатных комплексов металлов, катализируемые кислотой, довольно обычны и объясняются присоединением протона к оксалатпому лиганду, что в свою очередь приводит к снижению прочности связи М — О (стр. 197). При реакциях Сг(Н20)2(С204) это обусловливает возможность расщепления хелатного кольца оксалатной группы, в результате чего перегруппировка конкурирует с обменом воды. Такой процесс с разрывом хелатного цикла подтверждается тем, что рацемизация Сг(С204)з происходит именно по этому механизму (стр. 279). [c.251]

    Дополнительные сведения об эффективной величине кислотности и о природе кислотных центров (льюисовского типа) можно получить на основании тщательного анализа данных, приведенных на рис. 3. Как видно из рисунка, максимумы скорости превращения не совпадают с максимумом кислотности. В том случае, если бы реакция катализировалась кислотами как бренстедовского, так и льюисовского типа, максимальная скорость реакции должна была бы наблюдаться при максимальной кислотности, получаемой при титровании амином (при условии, что рассматривается эффективная сила кислотных центров). Действительно, как нами было показано-ранее, в случае реакции деполимеризации паральдегида, которая, как известно, катализируется не только бренстедовскими ( [2804, ССЦСООН и др.) [12], но также и льюисовскими (Т1С14, А1С1з, ЗпС14 и др.) [13] кислотами, максимум скорости реакции совпадает с максимумом кислотности (см. рис. 4) [14, 15]. Скорость реакции полимеризации пропилена на никель-сульфатных катализаторах также хорошо согласуется с суммарной величиной бренстедовской и льюисовской кислотности при силе кислотных центров +1,5 [16]. Однако при изомеризации а-пинена в камфен на тех же самых катализаторах максимум скорости реакции не совпадал с максимумом кислотности [17]. В случае использования сульфата никеля максимальная кислотность при любой силе кислотных центров наблюдается при температуре прокаливания 350° С, а максимальная скорость реакции — на образце, предварительно прокаленном при 250 С (см. рис. 4). Подобное явление наблюдалось также при изомеризации бутена-1 в бутен-2 на сульфате никеля, нанесенном на окись кремния [18]. В реакции превращения хлористого метилена максимальную каталитическую активность показали образцы сульфата никеля, прокаленные при 400 С (см. рис. 3). Эта температура на 50° С превышает температуру, при которой наблюдается максимум кислотности. Наблюдаемое расхождение можно объяснить, принимая во внимание природу кислых центров сульфата никеля. На основании результатов, полученных при изучении новерхности сульфата никеля методами ИК-спектроскопии, рентгеновским, ЭПР и др. [19], пришли к выводу, что кислотные центры сульфата никеля характеризуются наличием ионов никеля с одной незаполненной орбиталью, которые проявляются в неполностью дегидратированной, метастабильной, промежуточной структуре б) (см. стр. 383). Образующаяся конфигурация является промежуточной формой между моногидратом (а) и ангидридом (е). Эта свободная орбиталь и возникающее сродство к электронной паре и объясняет льюисовскую природу кислотности сульфата никеля и его каталитическую активность. [c.382]


Смотреть страницы где упоминается термин Реакции изомеризации, катализируемые кислотами: [c.521]    [c.412]    [c.175]    [c.175]    [c.120]    [c.63]    [c.7]    [c.432]    [c.185]    [c.178]    [c.274]    [c.432]    [c.88]    [c.31]   
Смотреть главы в:

Новейшие достижения нефтехимии и нефтепереработки Том 2 -> Реакции изомеризации, катализируемые кислотами

Новейшие достижения нефтехимии и нефтепереработки -> Реакции изомеризации, катализируемые кислотами

Новейшие достижения нефтехимии и нефтепереработки Том 3 -> Реакции изомеризации, катализируемые кислотами




ПОИСК





Смотрите так же термины и статьи:

Реакции, катализируемые кислотами

Реакция изомеризации



© 2025 chem21.info Реклама на сайте