Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Торий, определение бора

    ОПРЕДЕЛЕНИЕ БОРА В БЕРИЛЛИИ, ЦИРКОНИИ, ТОРИИ И УРАНЕ [24] [c.431]

    Определение бора в тории. Стружку или кусочки анализируемого металла травят концентрированной азотной кислотой, содержащей следы фторид-иона, до тех пор, пока поверхность металла не станет блестящей, промывают водой и этиловым спиртом и высушивают. Далее поступают, как в случае анализа циркония, обрабатывая навеску 5 г 2,0 мл брома и 25 мл метанола. Охлаждают раствор перед добавлением брома, так как растворение протекает очень интенсивно. Добавляют 75 мл метанола перед добавлением 0,5 г бериллия. [c.433]


    Определение бора в уране. Перед взятием навески стружку или кусочки анализируемого металла травят 8 М азотной кислотой, промывают водой и этиловым спиртом и высушивают. Далее поступают, как при определении бора в тории, но в поглотительную колбу добавляют 40 мл метанола. После получения 60 мл дистиллята [c.433]

    Фотографирование спектра на спектрографе ИСП-22 для определения бора и бериллия. Аналитические линии этих элементов расположены в коротковолновой области спектра, где дисперсия прибора достаточно велика, а фон, создаваемый непрерывным излучением раскаленных частиц и слабыми неразрешенными линиями тория, значительно меньше, чем в длинноволновой области спектра. Одновременно на спектрографе с дифракционной решеткой, установленной в первом порядке, фотографировали видимую область спектра (5850— [c.271]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Метод пригоден для количественного определения тория в присутствии других р.з.э. [53, 54, 57, 60, 355, 413, 569], а также щелочных металлов, бора, бериллия и мышьяка [1135. При определении малых количеств тория в присутствии больших количеств урана получаются заниженные результаты. Цирконий должен быть предварительно отделен, в противном случае полнота осаждения тория не достигается [876, 1096] титан, по-видимому, не мешает [876]. [c.32]

    Современная технология обеспечивает возможность получения металлического тория высокой чистоты, использующегося в качестве источника атомной энергии. Последнее обстоятельство приводит к необходимости разработки методов определения в нем следов различных примесей, в первую очередь тех, которые обладают большими сечениями захвата нейтронов (бор, кадмий и р.з.э.). Однако такие методы в лите- [c.220]

    Недеструктивный активационный анализ применяли для определения > 0,03% У в тории [909] ниобии [719] (используют фотопик 0,480 Мэе, облучают в полиэтиленовой ампуле, активность измеряют через 15 час. после облучения) [218] нитриде бора (облучают в кварцевых ампулах 2 часа, охлаждают двое суток) [217] боре (облучают в цилиндре из прессованного порошкообразного бора, чувствительность 2-10 г, используют фотопик 0,680 Мэе) [219, 220] железе высокой чистоты (облучают 1 час, охлаждают 20 час. определению не мешают Зс, Сг, Со, Си, 2п, Оа, Аз, Мо, ЗЬ, Н1, Та) [877] окиси бериллия (облучают 3 часа, охлаждают 24 часа используют спектрометр с германиевым детектором) [38] и в речной воде [232]. [c.164]

    Для определения карбоксильных групп предложен метод торому растворенную в диоксане карбоновую кислоту превращают в метиловый эфир, действуя избытком метилового спирта при 60° С в присутствии трифторида бора в качестве катализатора. Воду, образующуюся по уравнению [c.503]

    См. также качественное определение церия в тории [128] определение циркония в тории [1850] определение железа в тории [1852] определение кремния в окиси тория [1353, 1453] определение сульфата в нитрате тория [571] определение бора в боргидрндах металлов [1419] определение газов в металлическом тории [419а, 1710, 1796а, 1859а]. [c.227]

    Кристаллический фиолетовый образует с анионным подидным комплексом индия легко растворимое в бензоле соединение. Изучены оптические свойства раствора и предложена методика оиределения индия [351]. Сходный вариант описан для опреде- пения олова [352]. Бриллиантовый зеленый ирименен для определения бора [353], галлия в алюминии [354], таллия в породах и рудах [355], сурьмы в мышьяке [356]. Метиленовый голубой предложен для определения бора в стали [357], церия в железе п стали [358], а также в оксалатах тория и лантана [359] для определения сульфат-ионов [360]. Малахитовый зеленый использован для определения сурьмы в био,погическнх материалах [361]. Кверцетин применен для определения олова [362], стильбазо — для определения вольфрама [363], арсеназо — для определения урана [364, 365]. [c.253]

    Используя различные методы определения атомных масс элементов, Я. Берцелиус в 1826 г. дал повую систему атомных масс (см. стр. 152). В этой таблице атомные массы большинства металлов оказались очень близкими к современным соответствующие оксиды лшогих из них получили правильную формулу, Вместо прежних формул РеОг, РеОз, СиО и СиОг оп принял формулы FeO, ГегОз, СпгО, СиО, СаО, ВаО, АЬОз, МнгОз, СггОа и др. Однако атомные массы щелочных металлов были установлены неточно, так как для их оксидов Я. Берцелиус принимал такой состав NaO, КО и т. д. В 1841 г. В. Реньо внес коррективы в эти формулы, после чего в системе атомных масс Я. Берцелиуса почти не было принципиальных ошибок. Из 54 элементов, известных к концу жизни шведского химика, неправильными оказались атомные массы серебра, бора, бериллия, кремния, ванадия, циркония, урана, церия, иттрия и тория многие из них были исправлены лишь в результате открытия периодического закона Д. И. Менделеева. [c.136]

    Измерение динамических характеристик имеет многообразное значение для полимерных систем, Самое важное — это получение иа основании таких измерений релаксационного спектра. Различные элементы структуры в полимерных системах под действием теплового движения самопроизвольно перестраиваются за разные времена г. е. различной частотой. Следовательно, существует на-бор частот V (и величин, обратных им, — времен релаксации), кО торый определяет способность всех элементов структур к перестройке. Некоторые из этих частот (или времен релаксации) встречаются чаще, другие реже. Интенсивность проявления той или иной частоты (или времени релаксации) по отношению к другим частотам представляется функцией их распределения. Она определяет релаксационный спектр полимерной системы. Этот спектр может быть определен как для частот перестройки структурь , так и для Времен релаксации. [c.263]


    В этот же период зародилось учение о валентности (Ф. Кекуле, Ш. Вюрц и др.), стали известными иовые хим. элементы (бор, литий, кадмий, селен, кремний, бром, алюминий, иод, торий, ванадий, лантан, эрбий, тербий, диспрозий, рутеш й, ниобий), с помощью введенного в практику спектр, анализа было доказано существование цезия, рубидия, таллия и индия. Было проведено определение и уточнение атомных масс мн. хим. элементов. [c.211]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Все эти минералы, по-]шдимому, разлагаются прй сплавлении с пиросульфатами щелочных металлов, но так же, как и обработка с серной кислотой, этот способ скорее используется для технических проб на торий, чем для полного анализа. Для сплавления лучше пользоваться пиросульфатом натрия, чем пиросульфатом калия, вследствие большей растворимости некоторых образующихся в результате сплавления двойных сульфатов натрия. При определении кремния в тех случаях, когда минерал не разлагается кислотами, когда присутствует фтор или требуется определить также содержание бора или фтора, обычно применяют сплавление с карбонатами или едкими щелочами. Сплавлением с карбонатом натрия пользуются также при проведении полного анализа фосфатов. Для определения фтора в минералах, растворимых в горячей концентрированной серной кислоте, можно пользоваться методом отгонки. В техническом анализе для разложения материала иногда применяют сплавление с едким натром или перекисью натрия, но при выполнении полного анализа оба эти реагента менее пригодны, чем карбонат натрия, так как они обычно менее чисты и, кроме того, слишком сильно действуют на сосуды, в которых проводят сплавление. [c.620]

    Из числа других методов онределения фтора можно упомянуть объемный метод, основанный на титровании фторид-ионов хлоридом железа (III) и весовой метод, в котором фтор осаждается в виде фторида тория ThF4. Первый метод, применимый к растворимым фторидам, основан на образовании железного криолита NagFeFg. Титрование проводится в нейтральном по фенолфталеину растворе, содержащем роданид аммония в качестве индикатора, хлорид натрия и спирт для понижения растворимости осадка и эфир, который делает точку эквивалентности более отчетливой. Хлорид натрия можно заменить хлоридом калия. Можно применять потенциометрический метод титрования . Бор мешает определению. [c.829]

    К этому списку можно прибавить еще группу так называемых редкоземельных элементов, олово, платину, тантал, ниобий, бор, бериллий и гелий. Некоторые из них встречаются иногда в определимых количествах, но их легко не обнаружить в ходе анализа по причине отсутствия точных методов их иденгификации. Торий, церий и другие редкоземельные элементы, вероятно, встречаются в силикатных горных породах гораздо чаще, чем это обычно полагают. Их присутствие и количество могут быть легко и точно установлены методами, указанными в своем месте, так что нет более причин пропускать их определение, как это было до настоящего времени, особенно если микроскопическим анализом или каким-либо иным образом доказано присутствие минералов, которые могут содержать эти эл( менты. [c.882]

    Мешающие вещества. Определению мешают многие ионы, ко- торые образуют соединения с салициловой кислотой и красителями. Поэтому рекомендуется предварительное отделение бора отгонкой в виде борнометилового эфира или лучше с помощью ионного обмена [45, 46]. Избыток салициловой кислоты, мешающий [c.65]

    При компл0ксонометрическом методе определения больших количеств висмута в материалах, содержащих титан, необходимо предварительное отделение висмута от основы. Ранее нами было найдено, что диэтилдитиокарбаминат (ДДК) может быть использован в качестве рабочего раствора для объемного определения висмута, свинца, кадмия и цинка [1]. Было изучено влияние pH, концентрации органического растворителя, мешающее влияние ряда катионов и анионов на определение висмута предлагаемым методом. Титан, цирконий, торий, ниобий и тантал не мешают прямому определению висмута. Не мешают тысячекратные количества щелочных и щелочноземельных элементов, алюминия, бора, цинка, марганца, бериллия, р. з. э., кобальта стократные количества кадмия, свинца, ванадия, хрома, никеля и других. Мешают определению медь, ртуть и золото. Точность метода 0,25% относительных. [c.174]

    Объёмных методов определения фтора без использования органических реактивов не существует. Наиболее стахше объемные методы основаны на гидролитическом осаждении /8/. При титровании нейтрального раствора фторида раствором соли алюминия первая избыточная капля титранта резко уменьшает pH раствора вследствие гидролиза соли алюминия, о чем должен сигнализировать внутренний кислотноосновной индикатор (метиловый красный иди метиловый оранжевый). На аналогичном механизме основан метод определения фторидов при помощи солей церия /Ъ/. Гораздо большее распространшие получили объёмные методы определения фтора, основанные на его способности образовывать труднорастворимыв малодиссоциированные соединения со многими элементами (бором, титаном, торием, цирконием, железом, алшинием, щелочноземелъншж металлами, магнии, свинцом, р.з.э. и др.). Соли перечисленных металлов применяют в качестве титрантов при определении фторидов. Конечная точка титрования определяется с помощью подходящего органического реактива на катион, раствором соли которого титруется фторид. [c.10]

    Установлено, что азотная и серная кислоты при концентрации до 25 /о (по объему), а также литий, натрий, калий, кальций, барий, стронций, медь, кадмий, свинец, хром, марганец, железо, серебро, титан, цирконий, фосфор, мышьяк, бор, алюминий, висмут, кобальт, никель, сурьма, торий и олово при концентрации по 1000 мкг/мл каждого определению не мешают. Несколько заниженные результаты получаются в присутствии магния и кремния (найдено соответственно 4,75 мкг/мл и 2,85 мкг/мл цинка вместо 5 мкг/мл). Значительный мешающий эффект был обнаружен первоначально со стороны галоидных кислот. Оптическая плотность при 2139 А 2,5 н. раствора соляной кислоты, содержащей цинк в концентрации 7,5 мкг/мл, равнялась 0,52 вместо 0,30 для водного раствора при той же концентрации цинка. С уменьшением концентрации кислоты оптическая плотность раствора приближалась к 0,30 (в растворе 0,1 н. соляной кислоты оптическая плотность равна 0,28). Объясняя полученный результат, авторы предположили наличие в области 2100—2200 А молекулярных абсорбционных полос соляной, бромистоводородной и йодистоводородной кислот, ранее не идентифицированных и в связи с этим рекомендовали определение цинка проводить в отсутствии галоидных кислот. С этим объяснением не согласился автор работы [8]. По его данным, галоидные кислоты при использовании горелки из нержавеющей стали определению цинка не мешают. В связи с этим он высказал предположение, что поглощение в области 2000—2200 А вызвано поступлением в пламя загрязнений. В последующих исследованиях это предположение подтвердилось [9] было показано, что при использовании латунной горелки ее поверхностный окисный слой разрушается соляной кислотой и вносится в пламя вместе с распылохм анализируемого раствора. Этим объясняется поглощение в пламени растворов галоидных кислот как при длине волны Zn 2139 А, так и при длинах волн 2024,. 2165, 2178 и 2182 А. При указанных длинах волн [81] расположены сильные абсорбционные линии меди. [c.149]

    Определение в титане, цирконии, тории, тантале, уране и боре Е. Booth, [c.664]

    За последние годы появилось много работ по определению металлов, как нормально входящих в состав пищевых продуктов, так и присутствующих в виде примесей мышьяка [174, сурьмы [170], висмута [137], бора [17, 101,261], кадмия [56], кобальта [16], свинца [58, 149], ртути [57], селена [163], олова [108] иурана[205]. Недавно опубликованы методы определения в пищевых продуктах солей фтористоводородной кислоты [156, 292] и иода [264]. Определение фторидов основано на перегонке в присутствии серной кислоты, нейтрализации дестиллята, выпариваний и озолении остатка. Далее золу обрабатывают хлорной кислотой и сульфатом серебра и снова подвергают перегонке. Ион фтора определяют в отгоне, добавляя избыток раствора нитрата тория и оттитровывая последний раствором фторида в присутствии ализаринового красного. [c.177]


Смотреть страницы где упоминается термин Торий, определение бора: [c.227]    [c.69]    [c.64]    [c.156]    [c.185]    [c.669]    [c.824]    [c.111]    [c.288]    [c.90]   
Калориметрические (фотометрические) методы определения неметаллов (1963) -- [ c.431 ]




ПОИСК





Смотрите так же термины и статьи:

Определение бора в бериллии, цирконии, тории и уране

Торий определение



© 2025 chem21.info Реклама на сайте