Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий, анализ

    Исходя из свойств некоторых органических соединений, применяемых в анализе, перспективными для качественного обнаружения ионов металлов метод адсорбционно-комплексообразовательной хроматографии являются (в скобках указаны определяемые элементы) ализарин С (алюминий, циоконий, торий) алюминон (алюминий, бериллий) арсеназо III (цирконий, гафний, торий, уран, редкоземельные элементы) диметилглиоксим [никель, кобальт, железо (II), палладий (И)] 2,2 -дипиридил [железо (И)] дитизон (серебро, висмут, ртуть, свинец, цинк) дифенил-карбазид [хром (VI)] 2-нитрозо-1-нафтол (кобальт) нитро-зо-Н-соль (кобальт) рубеановая кислота [железо (III), [c.248]


    Своеобразные химические свойства фтора и большое практическое значение многих его соединений обусловили развитие ряда методов, основанных на образовании или разложении нерастворимых и комплексных соединений. Известно, что ионы фтора образуют в водных растворах прочные комплексные (иногда нерастворимые) соединения с алюминием, железом, кремнием, цирконием, ураном, титаном и другими элементами. Некоторые соединения (например, фтористый алюминий) растворимы в воде, но очень мало диссоциируют и почти не подвергаются гидролизу. Эти свойства соединений фтора широко используются в химическом анализе для определения и отделения ряда элементов, а также для определения ионов фтора Для методов, основанных на образовании или разложении соединений фтора, характерны следующие группы реакций. [c.426]

    В процессе изучения факторов, влияющих на степень химической деструкции НПАВ в пластовых условиях конкретных месторождений, были проведены спектральные анализы пород. При этом было установлено присутствие в них значительного количества металлов переходной валентности (медь, марганец, цирконий, кобальт, никель), которые, как известно, обладают каталитической активностью. Предварительными лабораторными опытами по определению химической деструкции НПАВ было установлено, что на стабильность последних существенное влияние оказывают сера и ее соединения. Поэтому при анализе пород различных нефтяных месторождений особое внимание было уделено содержанию серы (табл. 5). [c.28]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]


    О возможности получения надежных результатов активационных определений при использовании, короткоживущих изотопов свидетельствует ряд других исследований, например опыты по определению гафния в образцах циркония. Анализ проводился по короткоживущему изотопу гафния Hf " (19 сек). Результаты параллельных опытов для различных образцов циркония приведены в табл. 15. [c.127]

    Было выяснено, что гидролизованные катионы металлов лучше всего извлекаются из нитратных сред, плохо из сульфатных. Из нитратных сред хорошо извлекаются висмут (П1), железо (Н1), медь, кобальт, цинк, никель, хуже цирконий и гафний. Состав экстрагируемых комплексов был установлен, как непосредственным химическим анализом, так и методом сдвига равновесия. [c.41]

    С некоторыми изменениями метод определения так называемого растворимого азота в стали можно применить для его определения в цирконии. Анализ стандартных образцов циркония, содержащих 0,016% азота, можно выполнять с точностью 0,001%. [c.123]

    Обнаружение ионов цирконила. Анализ смеси ионов цирконила и ртути (II). Через колонку пропускают две-три капли 2 н. раствора соляной кислоты, затем две-три капли раствора ализарина и две-три капли исследуемого раствора, при этом образуется розово-фиолетовая зона, содержащая цирконил-иопы, которая быстро перемещается вниз. Затем в эту же колонку вносят раствор иодида калия. Вверху колонки образуется оранжево-красная зона, содержащая ионы окисной ртути. Через несколько минут хроматограмма имеет следующий вид вверху—белая зона, затем—оранжевая, ниже—розово-фиолетовая зона. [c.81]

    В данной работе описаны три метода анализа циркония метод прямого спектрального анализа, основанный на фракционном испарении примесей с носителем — хлористым серебром химико-спектральный метод с обогащением примесей путем хлорирования металлического циркония химико-спектральный метод с концентрированием примесей путем отделения циркония миндальной кислотой. В этих методах устранено мешающее влияние собственного спектра циркония. Анализ выполняется на спектрографе средней дисперсии, причем одновременно определяют 18—20 элементов. Средняя относительная ошибка в каждом методе составляет около 20%. [c.151]

    Влияние температуры на степень восстановления чистой N 0 показано на рис. 2.1. Анализ степени восстановления промотиро-ванных образцов показал, что при введении добавок восстановление затрудняется. При введении окиси алюминия степень восста--новления составляет всего 33%, при введении окиси хрома —42%. Окись циркония практически не оказывает влияния. Размер частиц никеля, рассчитанный из данных по величине поверхности и степени восстановления, увеличивается при введении добавок оки- [c.27]

    Развитие этих отраслей промышленности, науки и народного хозяйства страны потребовало от аналитической химии новых совершенных методов анализа. Потребовались количественные определения содержания примесей на уровне 10 ...10 % и ниже. Оказалось, например, что содержание так называемых запрещенных примесей (Сс1, РЬ и др.) в материалах ракетной техники должно быть не выше 10 %, содержание гафния в цирконии, используемом в качестве конструкционного материала в атомной технике, должно быть меньше 0,01%, а в материалах полупроводниковой техники примеси должны составлять не более 10 "%. Известно, что полупроводниковые свойства германия обнаружились только после того, как были получены образцы этого элемента высокой степени чистоты. Цирконий был вначале забракован в качестве конструкционного материала в атомной промышленности на том основании, что сам быстро становился радиоактивным, хотя по теоретическим расчетам этого не должно было быть. Позднее выяснилось, что радиоактивным становился не цирконий, а обычный спутник циркония — гафний. В настоящее время цирконий научились получать без примеси гафния, и он эффективно используется в атомной промышленности. [c.12]

    Соли многих часто встречающихся в анализе элементов сильно гидролизуются. Особенно неустойчивы разбавленные растворы гидролизующихся солей. Например, уже в день приготовления разбавленные растворы железа(П1) заметно снижают из-за гидролиза свою концентрацию. В растворе солей поливалентных металлов может происходить полимеризация или поликонденсация их ионов, что также приводит к снижению концентрации этих элементов при стоянии растворов. Это особенно характерно для солей алюминия, железа, молибдена, циркония, тория, вольфрама. Растворы гидролизующихся солей сильных кислот полезно подкислять при хранении и выпарива- [c.21]

    Купферон значительно более эффективен при осаждении катионов других металлов, в частности при анализе руд и сплавов, содержащих некоторые редкие элементы. Купферон широко применяется для осаждения ионов железа, ванадия, циркония, титана, олова, тантала, ниобия, четырехвалентного урана (ионы шестивалентиого урана не осаждаются) и др. Эти ионы осаждаются в сильнокислой среде, что позволяет отделить их от ряда других ионов, не осаждающихся в этих условиях. Таким образом названные выше ионы отделяют от алюминия, бериллия, марганца, никеля, шестивалентного урана, фосфатов и др. Осадки обычно прокаливают и взвешивают в виде окислов. [c.103]


    Для анализа смеси элементов, близких по химическим свойствам, применяют рентген-спектральный метод. Исследуемое вещество наносят на поверхность антикатода рентгеновской трубки, создают вакуум, облучают антикатод потоком электронов и измеряют положение и интенсивность линий возбужденного рентгеновского спектра. Метод особенно ценен для анализа, например, смеси редкоземельных металлов или циркония и гафния. [c.19]

    Общее число реакций, которое может протекать в системе, велико (более 40), что затрудняет термодинамический анализ. Не менее сложно и экспериментальное ее изучение вследствие необходимости соблюдать особые условия работы с низшими хлоридами и пирофорным порошком циркония. Практически все реакции в системе твердофазные, равновесия устанавливаются за длительное время (20—100 ч). [c.344]

    Анализ стали. В стали, кроме железа, могут содержаться следуюш,ие элементы марганец, хром, никель, кобальт, ванадий, молибден, вольфрам, титан, цирконий, углерод, кремний, фосфор, сера и др. Обычно фосфор, серу и углерод в сталях не открывают, а проводят только количественное определение их. [c.454]

    Анализ циркония. Анализ другого важного конструкционного материала — циркония на 29 примесей, среди которых были В, Ве, d, Fe, Mn и др., проводили Дель-Гроссо и Лэндис Спитцер и Смит а также Гордон и Жакоб Во всех этих работах в качестве носителя выбрано хлористое серебро. В последней работе получены несколько худшие результаты, чем в [c.335]

    Состав экстрагируемого комплекса устанавливался, как непосредственным химическим анализом органической фазы на ме-тг л, кислоту, хлор-ионы, воду, так и спектроскопическими методами (ИК-и ПМР-спектры) и методами,-основанными на использовании закона действия масс (метод разбавления и насыщения). В виде координационно-сольватированных соединений экстрагируются уран, цирконий, гафний, торий, теллур, селен (Me l4  [c.40]

    Практические работы по люминесцентному методу анализа, Работа 14. Флуорикетрическое определение родамина 6Ж Работа 15. Флуориметрическое определение циркония морином [c.203]

    На рис. 74 можно видеть, что кривыеД0° для многих хлоридов пересекаются друг с другом, следовательно, взаимная их устойчивость меняется с изменением температуры. Это необходимо учитывать при анализе хлорирования многокомпонентного сырья, когда хлориды одних металлов могут быть хлорирующими агентами по отношению к другим металлам или окислам. На том же рисунке видно, что при данной температуре металл способен вытесняться из хлорида другими металлами (восстанавливаться) тем легче, чем выше егоДО°, и, наоборот чем ниже лежит кривая AG° образования хлорида, тем сильнее восстановительные свойства данного металла. Металлические титан, цирконий и гафний получают восстановлением их тетрахлоридов магнием или натрием. Кривые Д0°, Mg и Na l лежат значительно ниже кривых указанных тетрахлоридов, поэтому реакции восстановления протекают практически нацело. Выше 2000° в качестве восстановителя может быть использован водород, так как в этой области кривая для реакции (40) лежит ниже кривых для тетрахлоридов  [c.259]

    Другие реакции имеют более широкий диапазон применения. Например, малорастворимая в воде хлораниловая кислота, растворы которой интенсивно поглощают свет в зеленой области спектра, образует осадки с такими катионами, как кальций, стронций, барий и цирконий. Уменьшение оптической плотности раствора при образовании осадков можно использовать для определения катионов. Этот реагент пригоден и для колориметрического определения анионов. Например, малорастворимый хлоранилат бария в присутствии следовых количеств сульфата переходит в нерастворимый в воде сульфат бария, а эквивалентное количество хлораниловой кислоты переходит в раствор. Содержание ее можно определить по увеличению светопоглоще-ния раствора. Аналогично можно проводить анализ хлоридов и фторидов в растворе, используя хлоранилаты ртути или лантана. [c.366]

    Метод испарения использован для анализа урана (UsOs), марганца, железа, хрома, кремния, вольфрама, молибдена, ванадия, титана, алюминия, бериллия, тория, плутония, циркония, тантала, кальция (отгопка в основном из их оксидов). Особенно ценен этот метод для анализа радиоактивных элементов. Примеси конденсируются в графитовом стаканчике. [c.199]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]

    Для определения циркония в испытуемом растзорг из общего о бъема 50 мл берут 10—15 мл в зависимости от его содержания и проводят анализ, соблюдая условия, указанные при приготовлении эталонных растворов., Содержание циркония находят по градуировочному графику. [c.225]

    В 1921 г. Нильс Бор показал, что элемент Z = 72, существование которого предсказано Д. И. Менделеевым в 1870 г., должен. иметь строение атома, аналогичное цирконию (eoZr 2.8.18.10.2 и 72Э — 2.8. 18. 32. 10. 2), а потому искать его следует среди минералов циркония. Следуя этому, в 1922 г. венгерский химик Д. Хевеши и голландский физик Д. Костер в циркониевой руде методом рентгеноспектрального анализа открыли элемент Z = 72, назвав его гафнием (от латинского названия г. Копенгагена — места открытия элемента). Это был величайший триумф теории строения атома иа основе строения атома предсказано нахождение элемента в природе. [c.39]

    Элемент был назван курчатовием (Ки) в честь выдающегося советского ученого и организатора науки акад. И. В. Курчатова. К настоящему времени получены изотопы курчатовия с массовыми числами 257—261. Их периоды полураспада от 11 мин у Ки до 70 с у Ки. Несмотря на то что в первых опытах было получено всего 37 атомов этого элемента, чешский ученый И. Звара, работавший в группе Флерова, идентифицировал новый элемент и исследовал его свойства с помощью специальных экспрессных методов анализа. Было показано, что курчатовий резко отличается по свойствам от предыдущих элементов. Так, легколетучий хлорид курчатовия Ku U подобен тетрахлоридам циркония и гафния, в то время как хлориды актиноидов кипят при очень высокой температуре (выше 1500 °С). Подобно гафнию, курчатовий ведет себя и при хроматографическом разделении. Таким образом, курчатовий является тяжелым аналогом гафния и элементом IVB-группы его электронная конфигурация [Rn]5/ 6dW. [c.450]

    Н. Бор на основании квантовомеханических расчетов показал, что последним редкоземельным элементом является элемент 71, стало ясно, что гафний — аналог циркония. Основываясь на выводах Бора, предсказавшего строение атома 72-го элемента и его основную валентность, Д. Костер и Г. Хевеши подвергли систематическому анализу рентгено-спектральным методом норвежские и гренландские цирконы. Совпадение линий рентгенограмм остатков после выщелачивания циркона кипящими растворами кислот с вычисленными по закону Г. Мозли для 72-го элемента позволило исследователям объявить об открытии элемента, который они назвали гафнием в честь города, где было сделано открытие (Hafnia — латинское название Копенгагена). Начавшийся после этого спор о приоритете между Г. Урбеном, Д. Костером и Г. Хевеши продолжался длительное время. В 1949 г. название элемента ггфний было утверждено Международной комиссией и принято всюду [10, 12, 15]. [c.214]

    Вычислить процентное содержаиие AI2O3 в руде, если из навески руды в 0,2430 г получили осадок фосфатов алюминия, титана и циркония общим весом (),2512 г, и при дальнейшем анализе руды в, ней было найдено 2,40% Ti и 0,050% Zr. [c.40]

    Титриметрический анализ. Комплексонометрия — один из широко распространенных методов анализа, основанный на применении комплексонов — органических соединений, содержащих азот и карбоксильные группы. Титрование комплексонами различного состава позволяет определять многие элементы цирконий, железо, висмут, кадмий, медь, цинк, магний, кальций и др. Известны и другие титриметрические методы, в которых используют комплексные соединения. Так, существует метод титрования фторидами— фторометрия, солями ртути (II) — меркуро-метрия и др. [c.24]

    Анализ электрохимических потенциалов металлов в расплавленных галогенидах показывает, что эффективные катодные пиросоставы могут быть построены на основе солей или оксидов вольфрама, молибдена, висмута, железа, никеля, свинца, хрома и некоторых других металлов. В качестве горючих могут быть применены цирконий, титан, ниобий, кремний и некоторые низкоплавкие соединения на их основе. [c.154]

    Дефектов отливок за счет термического расширения иеска можно избежать, применяя пески других типов, например хромит, циркон или оливин. Однако этн нески значительно дороже, а некоторые из них весьма дефицитны вот почему такой замене должен предшествовать тщательный экономический анализ. Хромит, циркон и оливин имеют равномерное (а не скачкообразное, как кварц) расширение ири нагревании (табл. 14.2), которое и ио абсолютному значению явно ниже термического расширения кварца. [c.212]

    Таким образом, на основании анализа свойств карбидов различных элементов и их влияния на процесс графитации можно сделать вывод о целесообразности использования лри производстве рекристаллизованных графитов методом ТМХО следующих карбидообразующих элементов бора, кремния, титана, циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена, вольфрама, и в меньшей степени железа, кобальта, никеля. Большинство из указаннь1Х карбидообразующих элементов в отдельности или в различном сочетании используют при получении различных марок рекристаллизованных графитов. [c.196]

    На основании анализа литературных и собственных экспериментальных данных о взаимодействии фаз Лавеса и строении диаграмм состояния тройных систем, образованных цирконием с переходными металлами, рассмотрена связь между характером взаимодействия и типом диаграммы состоянйя в зависимости от положения компонентов в периодической системе элементов. Рис. 2, библиогр. 37. [c.231]


Библиография для Цирконий, анализ: [c.118]   
Смотреть страницы где упоминается термин Цирконий, анализ: [c.210]    [c.238]    [c.26]    [c.428]    [c.253]    [c.85]    [c.103]    [c.286]    [c.318]    [c.481]    [c.401]    [c.572]    [c.517]    [c.154]    [c.271]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.319 , c.335 , c.337 , c.374 , c.380 , c.387 , c.462 , c.465 ]




ПОИСК







© 2025 chem21.info Реклама на сайте