Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инертные газы образование соединений

    Электронная конфигурация ns np дает возможность элементам этой группы проявлять степени окисления —И, +11, +IV и +VI. Так как до образования конфигурации инертного газа не достает всего двух электронов, то степень окисления —II возникает очень легко. Это особенно характерно для легких элементов группы. Действительно, кислород отличается от всех элементов группы легкостью, с которой его атом приобретает два электрона, образуя двухзарядный отрицательный ион. За исключением необычных отрицательных степеней окисления кислорода в перекисях (—1), надперекисях (—Va) и озонидах (7з), соединениях, в которых есть связи кислород — кислород, а также состояний + 1 и -+II в соединениях O. Fa и ОРз кислород во всех соединениях имеет степень окисления —И. Для остальных элементов группы отрицательная степень окисления становится постепенно менее устойчивой, а положительные — более устойчивыми. У тяжелых элементов преобладают низшие положительные степени окисления. [c.130]


    Блестящим подтверждением этого положения могут служить достижения в химии инертных газов. Долго считалось, что инертные газы не образуют химических соединений (отсюда и их название). Однако в 1962 г. химикам удалось получить несколько химических соединений инертных газов, например ХеРг, ХеР , ХеОз. В последние годы получен еще ряд соединений ксенона и криптона с кислородом и фтором. Образование таких соединений невозможно объяснить с точки зрения полной химической инертности последнего заполненного энергетического уровня. [c.74]

    Для образования валентной оболочки с конфигурацией нужны четыре пары связывающих электронов, причем эта оболочка имеет такую же электронную конфигурацию, как и соседний инертный газ. Такие соединения являются тетраэдрическими. Но хотя 4-координационная система является открытой, в ней нет легко доступных орбиталей, чтобы реакция могла идти по ассоциативному механизму. В то же время известны координационно ненасыщенные [c.62]

    В период 1916—1920 гг. появились октетные теории химической связи, развитые Косселем и Лэнгмюром. Коссель полагал, что реакционная способность элементов сводится к тому, что их атомы стремятся принять электронную конфигурацию инертных газов. Образование таких конфигураций может происходить в результате перехода электронов от атомов одних элементов к другим. При этом образуются разноименно заряженные ионы, удерживаемые в молекуле силами электростатического притяжения. В результате такого процесса образуются гетерополярные молекулы. Эта теория давала возможность объяснить ряд реакций, а также свойства некоторых соединений. Но она была беспомощна объяснить образование неполярных соединений и их свойства. Этот пробел в теории Косселя был восполнен Лэнгмюром, который предположил, что восьмиэлектронная конфигурация атомов может достигаться не только за счет перехода электронов от атомов одних элементов к другим, но и благодаря образованию общих электронных пар, принадлежащих одновременно двум атомам. В дальнейшем эта теория была развита Льюисом, который показал, что общие электронные пары могут образовываться не только вследствие подчинения правилу октетов . Например, в хлориде бора атом бора окружен не восьмью, а только шестью электронами, фосфор в РР5— десятью электронами, а сера в 5Рб — двенадцатью электронами. [c.76]

    В 1915 г. немецкий физик В. Коссель на основе разработанной Н. Бором теории строения атома дал объяснение процессам, происходящим при взаимодействии между атомами некоторых элементов. В основе его теории лежит постулат о стабильности электронных оболочек атомов инертных газов. Атомы других элементов способны относительно легко отдавать электроны с внешнего электронного слоя или принимать их на него, стремясь иметь оболочку атомов инертных газов. Образование химических соединений, по [c.67]


    Соединение НВг плавится при —86.5°, соединение СЦ — при —98° Известно также соединение HsS с = —103°, и есть указания, что подобные соединения образуют НС1 и SO . Последняя, правда, дает два соединения — с 1 и 2 мол. толуола [ ]. Дают ли инертные газы аналогичные соединения с толуолом Какую роль играет здесь наличие дипольного момента у вступающего в соединение вещества Исследование по методу изоморфного соосаждения в подобных системах значительно сложнее, чем исследование в системах соединений фенола. Там мы имели две твердые фазы и газообразную, поэтому отделить газовую фазу от твердой можно было простым промыванием трубки специально составленной смесью газов (в которой парциальное давление НС1 и HjS отвечало упругости диссоциации их соединений). Здесь же система состоит из твердого соединения, жидкой и газообразной фаз. Если мы хотим исследовать образование соединения радона по методу изоморфного соосаждения, то должны определить радон во всех трех фазах. Отделение кристаллов от жидкости гораздо труднее произвести количественно, чем отделение их от газовой фазы. Затем, варьировать процент осажденного HaS или НВг можно лишь в очень узких пределах, так как соединение кристаллизуется при составах жидкой фазы, лежащих между эвтектическими точками. Кроме того, соединения с толуолом начинают кристаллизоваться лишь при очень больших переохлаждениях (при —185°), причем тогда мгновенно затвердевает вся масса жидкости. Поэтому после получения соединения приходится нагревать реакционную трубку и расплавить почти всю массу кристаллов, оставив лишь еле заметный глазом зародыш. Затем только можно произвести охлаждение до температуры опыта и выкристаллизовать нужное количество кристаллов. Растворимость радона при низких температурах в смесях толуола и HaS и НВг оказалась настолько большой, что в газовой фазе оставалось не более [c.208]

    При ведении ряда технологических процессов в качестве промежуточных и побочных продуктов получаются неустойчивые перекисные соединения, которые могут инициировать взрывы. Во избежание образования неустойчивых перекисей системы продувают перед пуском инертным газом. Неустойчивые перекисные соединения хранят под инертной подушкой и т. д. [c.338]

    Справа выписано число неспаренных внешних электронов и формулы соответствующих водородных соединений. Валентность, согласно изложенному, должна равняться этому числу неспаренных электронов. Мы видим, что в полном соответствии с опытными данными водород, литий, фтор и натрий — одновалентны, кислород — двухвалентен, азот — трехвалентен. Атомы инертных газов гелия и неона не образуют молекул, так как все их электроны спарены, поэтому их валентность равна нулю. Противоречие мы наблюдаем лишь для атомов Ве, В, С, для которых возможны и другие валентности (указанные в скобках). Но это противоречие только кажущееся и объясняется тем, что мы привыкли считать, что свободные атомы, образуя химическую связь, обязательно сохраняют строение своих электронных оболочек. Но не существует никаких причин, по которым это должно быть только так атом, образуя связь, уже не является свободным, и его электронная конфигурация может и должна — в большей или меньшей степени) измениться. Поэтому необходимо принимать во снимание те изменения энергии, которые могут возникнуть при образовании химической связи. [c.71]

    Описан случай взрыва в трубопроводе, ведущем к резервуару с разбавленным бутадиеном, при выкачивании последнего с помощью инертного газа , получаемого сжиганием горючего газа в смеси с ограниченным количеством воздуха в закрытой камере. Инертный газ содержал 1,8% кислорода. При контакте этого газа с бутадиеном образовалась взрывчатая перекись бутадиена. Содержавшиеся в газе окислы азота вступили в реакцию с бутадиеном, что привело к образованию неустойчивых комплексных соединений. Разложение перекиси бутадиена могло произойти под воздействием солнечного тепла или механического удара. [c.146]

    Сама химическая реакция протекает практически мгновенно н при взаимодействии с газообразным серным ангидридом лимитируется его диффузией, завершаясь в пограничной пленке жидкой фазы. Это ввиду высокой экзотермичности реакции способствует местным перегревам и образованию побочных продуктов (олефины, карбонильные соединения, смолы), которые вызывают потемнение и ухудшение качества ПАВ. Поэтому важное значение имеет способ проведения реакции, обеспечивающий отвод тепла и устранение местных перегревов с надежным регулированием температурного режима (разбавление 50з инертным газом, интенсивное перемешивание, проведение реакцни в пленке). [c.320]

    Реакции разложения (препараты 141, 142, 152—154, 160). В препаративных целях можно использовать пиролиз. При этом происходит термическое разложение исходных соединений с образованием твердого вещества и газа. Для полноты протекания реакции образующийся газ необходимо удалять из сферы реакции. С этой целью синтез проводят в открытых тиглях, применяют вакуум или пропускают поток инертного газа. Получение элементов в свободном состоянии термическим разложением веществ см. табл. Е.10. [c.518]


    Нами были рассмотрены малоэффективные системы выделения целевых продуктов из парогазовых смесей и их санитарной очистки. ПГС, содержащие иногда и дисперсную фазу, образуются в процессах жидкофазного или парофазного окисления углеводородов кислородом воздуха. Характерной особенностью для них является необходимость выделения незначительных количеств, как правило, конденсирующихся или сублимирующихся соединений из большого объема неконденсирующегося газа. Относительно малые концентрации примесей обусловливают образование жидкой и твердой дисперсной фазы в объеме ПГС. Конденсация пара из инертного газа на охлаждаемой поверхности происходит при одновременных процессах тепло- и массообмена. Соотношением скоростей переноса тепла и массы определяется конденсация пара на поверхности или в объеме, или одновременно на поверхности и в объеме. При малых концентрациях тепло может отводится быстрее, чем подводятся конденсирующиеся компоненты к поверхности, поэтому за счет интенсивного охлаждения ПГС становится насыщенной и даже пересыщенной паром, который в этом состоянии конденсируется в объеме с образованием тумана. По этой причине даже при более низких температурах хладоагента в конденсаторах содержание примесей в отходящих газах не уменьшается. Улавливание же тумана является трудоемкой операцией. [c.7]

    На установках депарафинизации и обезмасливания кетонами используют инертный газ, получаемый сжиганием газообразного топлива, очищенного от серосодержащих соединений, в генераторах в атмосфере воздуха. Инертным газом заполнено пространство над жидкостью в фильтрах, вакуум-приемниках фильтрата, приемниках раствора гача и емкостях для растворителя или растворов. Инертный газ предназначен для предотвращения образования взрывоопасной смеси низкокипящих растворителей с кислородом воздуха предохранения продуктов от окисления уменьшения потерь растворителя отдувки осадка на фильтрах. Для обеспечения взрывобезопасности газовой подушки в аппаратах установки концентрация кислорода в инертном газе не должна превышать 6%. Снабжение инертным газом осуществляется по централизованной системе с применением одного или нескольких газогенераторов и блоков очистки инертного газа. [c.207]

    Разнообразие технологических процессов обусловливает и образование технологических выбросных газов различного фракционного состава и концентрации различных примесей к потенциально инертному газу или воздуху, являющемуся основным компонентом этих выбросов. Такое многообразие по свойствам и составу газовых выбросов и вентиляционных потоков, требующих санитарной очистки, затрудняет создание унифицированной конструкции фотохимического реактора, предназначенного для очистки только от углеводородных соединений. С учетом конкретных технологических условий приходится или модернизировать уже разработанную конструкцию реактора, или вообще разрабатывать новый вариант аппарата. Для случая, когда, кроме примесей, снижающих активность катализатора, выбросной газ содержит твердую углеводородную фазу, нами предложена конструкция термокаталитического реактора комбинированного типа. [c.308]

    Хлор — активный окислитель. Он весьма энергично реагирует с металлами и большинством неметаллов (за исключением Оа, Na и инертных газов), легко окисляет многие сложные соединения. Восстановительные свойства проявляет лишь при взаимодействии с фтором. Вступает также в реакции самоокисления — самовосстановления. Для их протекания наиболее благоприятна щелочная среда, способствующая образованию простых и сложных анионов  [c.302]

    Сиджвик допустил, что можно провести параллель между образованием устойчивого октета электронов у огромного количества простых соединений, устойчивой конфигурацией электронов, возникающей в результате комплексообразования у центрального иона комплекса, и числом электронов в электронной оболочке инертного газа. Эта гипотеза Сиджвика основывалась на предположении, что существуют не только обычные ковалентные связи, оба связевых электрона которых первоначально находятся у двух различных атомов, но и донорно-акцептор-н ы е, где оба связевых электрона до взаимодействия принадлежат одному и тому же атому —донору электронной пары. Связи такого типа возникают в ионе На внешней оболочке атома [c.246]

    Возможно образование соединений за счет ковалентных связей, если перевести атомы инертных газов в возбужденное состояние, т. е. за счет энергии извне электроны 5- и р-подуровней перевести на вакантные места -подуровней. Этого нельзя сделать для атомов гелия и неона, так как они имеют один или два уровня и -подуровня в этих атомах нет. Для атомов аргона, криптона, ксенона и радона при возбуждении появятся холостые электроны и станет возможна ковалентная связь. Схема передает вероятность возбуждения  [c.637]

    Поскольку в структуре атомов галогенов недостает лишь по одному электрону для построения оболочки инертного газа, то для всех этих элементов характерна ковалентность 1 и степень окисления —1. Этим и исчерпываются валентные возможности фтора (за исключением мостиковых соединений), так как у атома фтора во внешнем электронном слое нет свободных квантовых ячеек и разъединение спаренных электронов практически происходить не может. Возбуждение, связанное с переводом одного 2р-электрона на уровне Зз, требует (в расчете на 1 моль атомов) затраты 1225 кДж/моль. Такие большие энергетические затраты не окупаются энергией, которая выделяется при образовании химических связей возбужденным атомом. [c.140]

    Отсутствие холостых электронов обусловливает невозможность образования соединений за счет ковалентной связи. До последнего времени считалось, что атомы инертных газов не могут вступать в реакции за счет ионной связи, так как обладают очень большим ионизационным потенциалом. [c.633]

    Вид рассматриваемых экспериментальных зависимостей обусловлен природой ионов и химическими взаимодействиями в растворах. Кривые с минимумом наблюдаются у электролитов, содержащих катионы с оболочкой инертных газов. Ионы без таковой проявляют склонность к образованию ионных пар катион — анион или комплексных соединений. [c.429]

    Отсутствие неспаренных электронов указывает на невозможность образования соединений за счет ковалентной связи, поэтому молекулы простых веществ, образуемых этими элементами, одноатомны. Особенности строения и высокая химическая инертность определили групповое название — благородные газы. [c.227]

    Ковалентная (гомеополярная) связь. Когда молекула образуется в результате соединения одинаковых атомов или атомов, близких по способности отдавать или присоединять электроны, полного перехода электронов от одного атома к другому с образованием ионов не происходит. И в этом случае атомы, соединяясь, приобретают устойчивые электронные слои, подобные внешним слоям инертных газов но это осуществляется в результате заполнения их внешних слоев путем обобщения валентных электронов, ранее принадлежавших каждому из атомов. [c.26]

    Методы определения кислорода в галогенидах лития (и в других щелочных металлах, а также в щелочноземельных металлах) рассмотрены в [103]. В методе вакуум-плавления и восстановительного плавления в токе инертного газа кислородные соединения восстанавливаются углеродом с образованием окиси углерода. Применение этих методов ограничивается га-логенидами, обладающими малой летучестью при температуре экстракций газов (1900—2000° К). В случае летучих галогенидов проводится их отгонка, а затем восстановление кислородных соединений в остатке при повышении температуры. Целесообразно также использование метода плавления в потоке инертного газа, при котором скорость испарения вещества меньше, чем при вакуум-плавлеиии. Чувствительность метода 1-10 —1- 10 вес.% Ог. Коэффициент вариации 15—30%. [c.157]

    Синтез смешанных полиэфиров. Смесь пизкомолекулярных гомополиэфиров, взятых в определенном соотношении, загружают в 2-литровую колбу, снабженнук> мешалкой, трубкой для ввода инертного газа, трубкой, соединенной с холодильником и приемником. Колбу нагревают на масляной бане при 220—260° С при атмосферном давлении до прекращения отгона этиленгликоля. Затем давление в системе медленно понижают до 0,2—0,3 мм рт. ст. и продолжают поликонденсацию (при перемешивании реакционной смеси) до образования высоковязкого расплава, на что обычно требуется 6—10 час. [c.220]

    Мы видим, таким образом, что молекулярные соединения инертных газов не ограничиваются гидратами, существуют и другие и даже более устойчивые, — например, соединения с фенолом. Для изучения химии молекулярных соединений инертных газов путевой нитью является правило аналогии. Теоретически и экспериментально удается установить ряд аналогов инертных газов в смысле образования молекулярных соединений. Попутно в сомнительных случаях решается вопрос о типе связи в соединении. Так удалось доказать, что НС1 и НВг дают с фенолом так же, как и инертные газы, молекулярные соединения, обусловленные ван-дер-ваальсовой связью. [c.214]

    Во избежание поликонденсации непредельных и кислородных соединений, содержащихся в сырье, за счет контакта последнего с кислородом воздуха, снабжение установок гпдроочистки сырьем следует организовать по схеме прямого питания или хранить его в промежуточных сырьевых парках в резервуарах под подушкой инертного газа. Контакт сырья с кислородом воздуха может привести к образованию отложений в системе реакторного блока (теплообменники, компрессоры, реакторы). [c.41]

    Как известно, конвертированный и коксовый газ содержит взрывоопасные и токсичные вещества. Растворы моноэтаноламина и метанола, применяемые для очистки газов, токсичны, а жидкий азот при попадании на кол<у вызывает обмораживание. Кроме того, процессы очистки идут при высоких и очень низких температурах. Возможность возникновения пожара или взрыва, отравления или получения ожога может создаваться при нарушениях технологического режима, подсосе воздуха в газ или в результате образования в производственных помещениях взрывоопасных и отравляющих газовоздушных смесей при прорыве газов и жидкостей через неплотности оборудования, коммуникаций и запорной арматуры. Поэтому герметичность оборудования и трубопроводов отделения очистки должны проверяться ежесменно. Запрещается подтягивать крепежные детали фланцевых соединений для ликвидации пропусков газов и жидкостей, если система находится под избыточным давлением. Давление следует повышать и снижать постепенно, по установленному для данного оборудования регламенту. Инертный газ, применяемый для продувок, должен содержать не более 3% (об.) кислорода и совершенно не иметь горючих примесей. Перед продувкой газ должен подвергаться анализу. [c.52]

    В 1926 г. Гейзенберг и Шредингер создали механику атомных и молекулярных систем, которая получила широкое применение в атомной и молекулярной физике. Необходимое дополнение в квантовую механику внес Паули, разработавший теорию электронных спинов. Это явилось фундаментом, на котором с учетом известного правила несовместимости (запрет Паули в атоме не может быть двух электронов, обладающих 4 одинаковыми квантовыми числами) было построено учение о химических силах, в принципе позволяющее понять и описать образование химических соединений. Сначала удалось интерп )етировать устойчивость электронных оболочек атомов инертных газов, благодаря чему нашло исчерпывающее объяснение понятие электровалентной связи, лежащее в основе теории Косселя. Затем получила квантово-механическое истолкование и ковалентная связь. Гейтлером и Лондоном было показано, что связь двух атомов в молекуле водорода может быть объяснена чисто электростатическими силами, если для этого использовать квантовую механику. Силы, связывающие два атома и два электрона, возникают благодаря тому, что оба электрона имеют антипараллельные спины и с большой степенью вероятности находятся между двумя атомными ядрами насыщаемость химических связей объясняется принципом Паули. Таким образом, представления Льюиса получили исчерпывающее физическое обоснование. [c.24]

    Одним из наиболее эффективных и распространенных видов является, газожидкостная хроматография (ГЖХ). В качестве неподвижной фазы выступает твердый сорбент с развитой поверхностью о нанесенной на него жидкой фазой, а подвижную фазу представляет инертный газ (гелий, азот, водород). При перемещении испаренной смеси веществ потоком инертного газа в,цоль слоя сорбента соединения различной приро.цы перемещаются с различными скоростями, зависящими от сил их взаимодействия с по.цвижной и неподаижной фазами. При достаточной длине слоя сорбента это приводит к образованию в подвижной фазе отдельных зон каждого компонента. Наличие или отсутствие вещества на выходе из колонки, заполненной твердым носите-лем, пропитанным термостабильной нелетучей жидкостью (неподвижная фаза), фиксируется детектором и регистрируется на самопишущем приборе в виде пиков. [c.43]

    Помимо фторидов должны существовать и соединения инертных тазов с сильно электроотрицательным кислородом. Такие соединения образуются при довольно сложно протекающем гидролизе фторидов (полярных молекулярных веществ). Путем -гидролиза и диспропорционирования можно получить — сами инертные газы, их оксиды, кислородные кислоты и при нейтрализации последних — соли. Гидролиз Хер4 идет с образованием >2 и ХеОз  [c.492]

    Как видно из изложенного выше, сведения о впервые полученных в 1962 г. соединениях инертных газов еще довольно отрывочны (и отчасти недостоверны). Однако сам факт существования этих соединений имеет большое принципиальное значение, так как наиболее наглядно и убедительно опровергает постулат незыблемости электронного октета (VI 3 доп. 12). Тем самым ставится также вопрос о целесообразности отказа от уже не вполне отвечающего существу названия инертные газы (подходящей его заменой могло бы служить название аэрофилы). О широком практическом использовании соединений инертных газов говорить еще рано, но, например, устойчивый при обычных температурах Хер4 мог бы служить удобной реакционной формой фтора (не загрязненного никакими другими химически активными элементами). Следует лишь иметь в виду возможную взрывоопасность этого соединения (из-за образования взрывчатого ХеОз во влажном воздухе). По соединениям инертных газов имеются обзорные статьи.  [c.246]

    Хроматография основана на различной способности компонентов смеси распределяться между двумя несмешивающимися фазами. При перемещении смеси веществ потоком инертного газа или жидкости (подвижная фаза) вдоль слоя сорбента (неподвижная фаза) соединения различной природы перемещаются с различными скоростями, зависящими от силы их взаимодействия с подвижной и не подвижной фазами. При достаточной длине слоя сорбента это приводит к образованию в подвижной фазе отдельных зон каждого компонента смеси. Впервые этот метод был использован М. С. Цветом для разделения смесей растительных пигментов. При этом в колонке с адсорбентом наблюдалось образование ряда окрашенных слоев, что и побудило автора назвать новый метод хроматографией (цве-тописание). [c.46]

    В качестве примера образования ионного соединения рассмотрим образование молекулы Na l в газовой фазе. Электронные конфигурации атомов натрия Is 2s 2/) 35 и хлора Is 2s 2/ 3s Зр показывают, что они легко могут быть превращены в оболочки инертных газов неона Is 2s 2р и аргона 2s 2р 3s Зр соответственно, при переходе одного электрона от натрия к хлору. В результате электростатиче- р с. 13. Образование ионов ского взаимодействия Na+ и С1- [c.75]

    Жесткая, малодеформируемая электронная оболочка типа инертного газа как для Ве +, так и для всех остальных катионов обсуждаемой группы обусловливает преобладающе ионный тип связи №+ — лиганд, поскольку ионы М2+ не имеют пустых ячеек, необходимых для предоставления лиганду с целью образовать донорно-акцепторную связь, и, кроме того, не имеют электронных пар, подходящих для образования л-дативной связи. Таким образом, комплексные соединения элементов этой группы должны быть построены за счет ион-ионного или ион-дипольного взаимодействия. Априори можно сказать, что самым сильным комплексообразователем в ряду Ве—Ба будет ион Ве + благодаря его маленькому размеру и большой плотности заряда. Самые неустойчивые комплексы должны быть у Ва. [c.42]

    Образование этого соединения доказывало, что PtFe является сильнейшим окислителем, способным оторвать электрон от молекулярного кислорода. Это наблюдение затем привело Бартлетта к мысли о возможности окислить шестифтористой платиной атомарный ксенон, что положило начало химии фторидных и кислородных соединений инертных газов [2, 3]. [c.157]


Смотреть страницы где упоминается термин Инертные газы образование соединений: [c.113]    [c.205]    [c.287]    [c.237]    [c.40]    [c.472]    [c.491]    [c.493]    [c.43]    [c.289]    [c.12]    [c.639]    [c.642]    [c.27]    [c.53]   
Химия в атомной технологии (1967) -- [ c.323 , c.331 ]




ПОИСК





Смотрите так же термины и статьи:

Газы инертные

Инертные газы соединения

Инертный газ

Инертных газов соединения

Образование газа



© 2024 chem21.info Реклама на сайте