Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Преобразование Фурье в спектроскопии ЯМР ЯМР

    Исследование красителей методом ЯМР представляет некоторые трудности, которые, хотя и не уникальны для этого класса химических веществ, все же более выражены, чем для многих других классов. Многие красители имеют сложное или очень сложное строение и очень слабо растворимы в растворителях, которые применяются в методе ЯМР. Кроме того, иногда количество исследуемого вещества очень мало. Справляться спектроскописту с этими проблемами помогают два относительно новых усовершенствования ПМР в сильных магнитных полях [3] и импульсная спектроскопия ЯМР с фурье-преобразованием (фурье-спектроскопия, ФС) [c.218]


    Применение преобразования Фурье в спектроскопии высокого разрешения позволяет приблизительно на порядок повысить отно- [c.285]

    Методом ЯМ[ исследуют практически все комплексные соединения, потому что у каждого элемента имеется изотоп с магнитным ядром, а применение импульсной ЯМР-спектроскопии с преобразованием Фурье позволяет получать спектры высокого разрешения для магнитных ядер изотопов при их естественном содержании. Ис- [c.312]

    В настоящее премя широко используют импульсные методы с последующей математической обработкой (главным образом преобразование Фурье), что позволяет получить ту же спектральную информацию, как и в обычном эксперименте с медленным прохождением. Импульсные методы более эффективны, их применение сокращает время измерений и существенно улучшает отношение сигнала к шуму. Идея применения Фурье-преобразования для ЯМР-спектроскопии заключается в том, что этот математический метод позволяет разложить колебания на его спектральные компоненты. Таким образом, фурье-преобразование используется [c.88]

    До недавнего времени в распоряжении экспериментаторов преобладали приборы ЯМР непрерывного режима, когда ядра с различными резонансными соотношениями поле частота последовательно возбуждаются за счет развертки поля или частоты. Эти приборы не позволяют решать сложные задачи на многих ядрах с достаточной чувствительностью и точностью измерений, поэтому вытесняются приборами нового поколения, где реализуется импульсная фурье-спектроскопия ЯМР —форма ЯМР с широкополосным возбуждением. Образец облучается последовательно одним или большим числом импульсов, причем импульсы радиочастотной мощности разделены одинаковыми или разными временными интервалами, и после воздействия импульсных последовательностей наблюдается усредненный спад свободной индукции (ССИ), который превращается в частотный спектр путем фурье-преобразования. [c.734]

    Процесс преобразования Фурье легче продемонстрировать для случая излучения, но он в том же виде применим и для абсорбционной спектроскопии. [c.763]

    Еще один переворот в области ЯМР происходит в наши дни. Ои обусловлен внедрением надежных сверхпроводящих магнитов совместно с импульсными методиками и преобразованием Фурье. Разрешение и чувствительность приборов выросли настолько, что исследования можно проводить на микрограммовых количествах вещества. Но, возможио, еще более важное значение имеет развитие импульсных методик, позволяющих в небывалой степени контролировать намагниченность образца и управлять ею. В результате с помощью импульсной спектроскопии ЯМР химики получают, вероятно, более обширную структурную информацию, чем с использованием любого другого отдельно взятого аналитического метода. [c.11]


    Эти соображения по поводу выборки имеют важные практические следствия для экспериментальной импульсной спектроскопии ЯМР. Предположим, что мы хотим иметь разрешение 0,2 Гц в эксперименте с временем регистрации Л, = 5 с. Если мы наблюдаем протоны при 500 МГц, то желательно иметь ширину спектра около 5000 Гц. Следовательно, в соответствии с критерием Найквиста необходимо проводить выборку сигнала каждые 1/10000 с ( = 0,1 мс). В результате за 5 с будет получено 50000 чисел, которые нужно запомнить и для которых впоследствии нужно выполнить преобразование Фурье. На большинстве современных спектрометров можно легко обрабатывать такие массивы данных, но при выполнении двумерных экспериментов, в которых чнсло точек возрастает в квадрате, оцифровка на основе этого принципа становится немыслимой. [c.36]

    При напряжении, изменяющемся в пределах 20 В, разрешение АЦП, равное 12 бит, означает, что напряжение измеряется с шагом 10 000/(2 —1)=2,44 мВ. Получаемые при этом целые числа преобразуются в двоичные числа. Входные данньк с амплитудой, меньшей единичного шага (в нашем случа 2,44 мВ), вообще не воспринимаются АЦП. Длина слова АЦП, так же как и длина слова компьютера, является очень важной характеристикой, определяющей доступный динамический диапазон, т. е. способность детектировать слабые сигналы в присутствии сильных сигналов. В рассматриваемом примере 12-битового АЦП предел задается отношением интенсивностей 2 1 = ==4096 1 для АЦП с разрешением 4 бит это отношение составляет только 16 1. Поэтому желательно использовать весь динамический диапазон АЦП, с тем чтобы правильно описывать спал свободной индукции. С другой стороны, отсюда также следует, что при накоплении данных длина слова компьютера должна превосходить разрешение АЦП, в противном случае будет происходить переполнение памяти с последующей потерей информации, В этом состоит специфика эксперимента ФП-типа, которая следует из того факта, что спектр в частотной области является результатом преобразования полного сигнала спада свободной индукции. Если в стационарном режиме переполнение при накоплении (см. гл. III) влияет лишь на отдельный участок спектра, например на интенсивный пик растворителя, то в импульсной фурье-спектроскопии обрезание части сигнала спада свободной индукции возмущает сигнал во временном представлении, чтс может полностью исказить сигнал в частотном представлении. [c.336]

    Из приведенного обсуждения становится ясным, что при использовании импульсной фурье-спектроскопии возникает ряд осложнений. Одно из них, наиболее часто встречающееся, относится к отраженным сигналам, возникающим при неправильном выборе диапазона регистрируемых частот относительно фактического спектра. Допустим, что вне этого диапазона частот имеется сигнал с более высокой частотой Дубу. Тогда, согласно теореме Найквиста, этот сигнал не будет регистрироваться. Однако можно показать, что точки, относящиеся к этой частоте, будут рассматриваться компьютером так, как будто они принадлежат частоте Ду — бу. Отсюда и происхождение термина отраженные сигналы , так как фурье-преобразование приводит к появлению сигнала в частотной области при Ду — 6у. Происхождение отраженных сигналов иллюстрирует рис. IX. 25. [c.340]

    Особенностью импульсной фурье-спектроскопии ЯМР является возможность использовать наряду с преобразованием Фурье значительное число других математических процедур обработки данных во временном представлении, что позволяет получать новые результаты. [c.342]

    Корреляционная спектроскопия ЯМР, ЯМР в режиме быстрого прохождения с преобразованием Фурье—форма ЯМР в непрерывном режиме, при которой наблюдается отклик спиновой системы па возбуждение в режиме быстрого прохождения и этот отклик превращается в спектр [c.440]

    Импульсная разностная фурье-спектроскопия ЯМР—форма импульсной фурье-спектроскопии ЯМР, в которой до преобразования Фурье из сигнала ССИ определяются разности частот между сигналами образца и сильным эталонным сигналом. [c.441]

    При использовании метода фурье-преобразования в спектроскопии ЯМР образец подвергают действию излучения, которое соответствует некоторому непрерывному интервалу частот (так называемое белое излучение). Во избежание насыщения системы излучение подается очень короткими импульсами. После импульса ядра испускают поглощенную энергию. Спектр этого излучения состоит из резонансных частот всех ядер в образце. Если имеются два невзаимодействующих между собой ядра, то испускаются две частоты VA и хх- Эти две частоты создают в детекторе картину биений , по которой можно рассчитать уа и хх- Такой процесс называют фурье-преобразованием. В случае нескольких частот анализ картины биений требует использования небольшой ЭВМ. Преимуществом метода фурье-преобразования является значительное увеличение чувствительности, обусловленное тем, что за время одного импульса детектируются одновременно все резонансные частоты, а не одна, как это имеет место при обычной спектроскопии ЯМР. Таким образом, можно использовать меньшее количество образца и исследовать спектры менее распространенных изотопов, например с. [c.502]


    В наши дни большинство спектрометров ЯМР высокого разрешения работают в режиме Фурье-преобразования, при котором возбуждение создается мощными неселективными радиочастотными (РЧ) импульсами. Наиболее часто встречающейся проблемой при работе на таких спектрометрах является подавление резонансных сигналов растворителя. Поэтому возникает необходимость возбуждения одного ядра или одной спектральной линии спинового мультиплета без возмущения остальной части молекулы. После перехода импульсной Фурье-спектроскопии к своему новому этапу развития (двумерный эксперимент), роль и популярность селективных методов стали быстро возрастать. [c.4]

    С появлением сканирующей ИКС с Фурье-преобразованием колебательная спектроскопия получила новые области применения в химии и физике полимеров. Увеличение чувствительности путем многократного сканирования позволило осуществить прорыв в методах недеструктивного анализа. [c.240]

    Обычный метод получения спектров ЯМР состоит в том, что при плавной развертке (сканировании) радиочастоты или напряженности магнитного поля в каждый момент времени наблюдают только за одной точкой спектра. Для получения полного спектра требуется 5-10 мин, и по времени методика Фурье-преобразования имеет заметное преимущество. Возбуждая одновременно все ядра образца с помощью короткого, продолжительностью около 100 мкс, импульса мощного радиоизлучения и прослушивая излучаемые им частоты по мере возвращения ядер к равновесному распределению по энергии, можно получить интерференционную картину, содержащую всю информацию о спектре образца необходимое для этого время составляет порядка 1 с. К сожалению, полученная интерференционная картина не поддается непосредственной интерпретации, однако ее математическая обработка с помощью ЭВМ, называемая преобразованием Фурье, позволяет получить обычный спектр с разверткой по частоте. Швейцарский ученый Рихард Эрнст получил в 1991 г. Нобелевскую премию по химии за предложение Фурье-ЯМР-спектроскопии и многомерной ЯМР-спектроскопии (ученый узнал о присвоении ему премии в самолете, возвращаясь в Нью-Йорк из Москвы, где он читал лекции). [c.260]

    Так как для отдельной последовательности, состоящей из РЧ импульса и спада свободной индукции, необходимо примерно 1 с, то за 10 ООО с (2,5 ч) можно зарегистрировать 10 ООО накоплений и после фурье-преобразования иметь 100-кратное улучшение отношения сигнал/шум по сравнению с тем, которое достигается при одном накоплении. Правда, выигрыш в отношении сигнал/шум, если речь идет о регистрации большого числа отдельных линий и на регистрацию затрачивается время Та, будет не столь велик, как следовало бы ожидать из приведенных выше рассуждений. При медленном накоплении можно работать с передатчиком при небольшой полосе пропускания, а в фурье-спектроскопии ширина полосы пропускания задается полной шириной спектра в частотной области. Однако выигрыш в чувствительности все еще будет значительным. Количественно он определяется отношением ширины полосы пропускания в частотной области к ширине отдельной резонансной линии Л 01/2. [c.45]

    И последующим расчетом искомого спектра посредством численного преобразования Фурье [1.14, 1.52]. Практическое осуществление импульсной фурье-спектроскопии стало возможным благодаря созданию в конце 60-х годов недорогих ЭВМ и разработке алгоритма быстрого преобразования Фурье (БПФ). [c.25]

    Линейное преобразование всегда можно представить в виде интеграла свертки сигнала и импульсной характеристики процесса фильтрации, как было показано в разд. 4.1.1. Применительно к фурье-спектроскопии спектр 5(ы) должен быть подвергнут процессу фильтрации, характеризуемому функцией фильтрации в частотном представлении H(ui)  [c.131]

    Из соотношения (4.1.28) следует, что до фурье-преобразования фильтрация в фурье-спектроскопии сводится к умножению сигнала свободной индукции на соответствующую весовую функцию (рис. 4.1.3). Такой чрезвычайно простой и удобный способ фильтрации представляет собой одно из достоинств фурье-спектроскопии, единственным возможным недостатком которого является необходимость произвести фурье-преобразование, прежде чем можно будет оценить эффект воздействия фильтрации на спектр. [c.132]

    Практически в фурье-спектроскопии время регистрации спада свободной индукции /max всегда ограничено и сигнал s t) известен только при О < / < /max. Это может существенно ограничить разрешение спектра, поскольку в этом случае производится фурье-преобразование усеченного сигнала [c.133]

    В последние годы в практике все шире используется импульсная Фурье-спектроскопия (ЯМР на ядрах С). В ЯМР-спектрометрах с Фурье-преобразованием в приемнике детектируется не сигнал поглощения или дисперсии (что имеет место в стационарных спектрометрах без Фурье-преобразова-ния), а сигнал спада свободной индукции (ССИ), который генерируется путем воздействия на образец ВЧ-импульсов определенной частоты. Наблюдение поведения системы ядерных спинов проводится по окончании каждого импульса, т. е. после выключения высокочастотного поля (ВЧ). Сигнал, детектируемый в приемнике, называют сигналом свободной индукции. [c.35]

    В этом разделе я хочу показать, как довольно абстрактные идеи разд. 2.3 применяю ч я на практике. Мы уже убедились, что измерять отклик ЯМР (ССИ), следующий за импульсом, весьма выгодно, так как эксперимент можно провести быстрее, Я утверждал, что у нас есть реальные возможности выделять из полученных данных известные спек1ральные частоты и что преобразование Фурье является ианболее общим способом для этого. Эта идея перехода от одного вида представления данных к другому составляет основную трудность для тех, кто впервые сталкивается с импульсной фурье-спектроскопией ЯМР, Лучший способ преодолеть ее-посидеть у спектромегра н понаблюдать за ходом вычислений. Если у пас есть шанс поступить таким образом, то не упустите его. Вы можете кое-что увидеть и понять. [c.31]

    Химики, использующие фурье-спектроскопию ЯМР от случая к случаю, часто ие хотят вникать во все дета ш детектирования, оцифровки, запоминания и преобразования данных, которые рассматриваются в разд. 2.4. Для многих простых приложений ими действительно можно пренебречь, поскольку налагаемые методом ограничения не препятствуют интерпретации результатов на простом качественном уровне. Например, пусть протонный спектр шириной Юм,д. занимает лист бумаги длиной 50 см. Прн рабочей частоте прибора 500 МГц это означает, что спектр записал в масштабе 100 Гц/см. Точки данных, воспроизводящие спектр, в этом случае располагаются на расстоянии 0,4 Гц друг от друга. Следовательно, на каждом сантиметре рисунка расположено 500 точек, которые образуют практически сплошную линию. Влияние оцифровки здесь незначительно, и в этом случае для нас не важно, что спектр может не быть непрерывной шнией. Для рутинных анализов или проверок чистоты образцов таких спектров вполне достаточно. Но как только мы беремся за решение действительно сложных структурных задач, этот подход уже не может нас удовлетворить. [c.41]

Рис. 2.16. Фурье-преобразование ступенчатой функции довольно часто встречается в фурье-спектроскопии ЯМР оно представляет собой функцию sine х. Рис. 2.16. <a href="/info/65442">Фурье-преобразование</a> <a href="/info/64963">ступенчатой функции</a> довольно <a href="/info/1456324">часто встречается</a> в <a href="/info/122630">фурье-спектроскопии</a> ЯМР оно представляет <a href="/info/1795776">собой</a> функцию sine х.
    Совр. метод масс-спектрометрии с использованием Ц. р.-спектрометрия ИЦР с преобразованием Фурье (ИЦР ПФ). Резонансное поглощение ионами электромагн. энергии происходит в анализаторе. Высокочастотное электрич. поле Позволяет вдентифицировать ионы по резонансному поглощению энергии при совпадении частоты поля и циклотронной частоты ионов с послед. фурье-анаг1изом (см. Фурье-спектроскопия) сигнала. Интенсивность сигнала от фуппы ионов массы т,- и заряда представляет собой экспоненциально затухающую косинусоиду  [c.375]

    Одним из недостатков фурье-спектрометрии является потребность в очень точных, а поэтому дорогостоящих деталях интерферометров например, наклон подвижного зеркала в процессе сканирования не должен изменяться больще чем на половину длины волны [34]. Для преобразования интерферограммы необходима также ЭВМ, и трудности с обслуживанием в случае неисправности могут создавать препятствия в работе для спектроскопистов, привыкших к диспергирующим спектрофотометрам. Спектральный интервал, хотя и достаточный, ограничен обычной областью (400 — 3800 см ), и из-за понижения эффективности светоделителя работа прибора ухудшается (т. е. увеличиваются щумы) вблизи пределов этого интервала. Различные спектральные области требуют различных светоделителей. Интерференционный спектрофотометр всегда сканирует полный спектр, и на каждую длину волны затрачивается одинаковое время в дифракционном спектрофотометре использование замедлителя скорости позволяет сканировать быстрее или пропускать те области спектра, которые не представляют интереса или где поглощение отсутствует. Ложный электрический сигнал или пропущенная точка может оказать заметное влияние на спектр, что проявляется в виде искажения контуров полос или потери разрешения. Если отсутствует необходимая оптическая или электрическая фильтрация [46], то при интегральном преобразовании (свертке) может возникнуть ложное спектральное поглощение (в английской терминологии aliasing или folding ). В монографии Гриффитса [36] имеется хорошее обсуждение ИК-спектроскопии с преобразованием Фурье (см. также [I, 10, И, 14, 75]). [c.44]

    Методом ИК-спектроскопии с преобразованием Фурье [185] изучались реакции гербицида Линурон (Linuron) в различных грунтовых системах. Торфяные почвы требуют гораздо больших количеств гербицида. Для обнаружения химической реакции Линурона , адсорбирован- [c.212]

    Приборы для ИК-снектросконии выпускаются промышленностью уже более 40 лет. В первых ИК-спектроскопах использовалось светорассеяние. Для разделения ИК-излучения на узкие полосы в них применяли призмы или дифракционные решетки. Затем последовательно облучали анализируемый образец иолученными узкими полосами. Такой способ позволял осуществлять сравнительно медленное механическое сканирование. В современных ИК-сиектрометрах с преобразованием Фурье вместо призмы или решетки используется интерферометр. В результате практически мгновенно происходит сканирование ио всему ИК-дианазону. Такое усовершенствование ИК-сиектрометров дало возможность подсоединять их неносредственно к капиллярным газовым хроматографам. [c.87]

    Для достижения наибольшей точности и чувствительности применяют новое поколение техники ИК-спектрометры с преобразованием Фурье, снабженные приставками, позволяющими получать спектры отражения, проводить пиролиз эластомеров и т,д. При проведении преобразования Фурье оказалось возможным коренным образом изменить конструкцию спектрометра, резко повысить чувствительность и информативность метода. Фурье-ИК-спектроскопия (FTIR) выросла в один из ведущих аналитических методов идентификации химических соединений и определения их концентрации. Области применения этого метода весьма разнообразны - от контроля качества промышленной продукции до практической криминалистики. Благодаря высокой селективности метода становится возможным выполнение количественных измерений компонентов смеси с минимальной подготовкой пробы или вообще без нее, а также в отсутствие деструкции. [c.219]

    Четыре гетероциклических кольца корринов образуются из четырех молекул порфобилиногена, которые, в свою очередь, синтезируются из восьми молекул АЛК. Следовательно, в общем случае восемь углеродных атомов корринового ядра могли бы образоваться из атомов С-5 молекул АЛК (схема 32). Положение семи из них было определено Шеминым и сотр. [115] посредством включения [5- С]АЛК в витамин В12 оно вытекает также из факта участия уропорфириногена П1 в построении корринового кольца. Шемин также обратил внимание на возможность того, что восьмой углеродный атом из С-5 АЛК, который в порфиринах (и порфири-ногенах) занимает б-положение, в корринах (80) может стать метильной группой при С-1 (выделена жирным шрифтом). Однако из-за отсутствия соответствующих методов деградации, с помощью которых можно было бы специфически изолировать эту метильную группу, в то время не представлялось возможным подтвердить гипотезу Шемина. Развитие в конце 60-х годов метода спектроскопии ЯМР С с использованием преобразования Фурье (Фурье-спектроскопия ЯМР С или, сокращенно, ФС ЯМР С), а также разработка улучшенных способов включения меченых предшественников в витамин В12 без их разбавления эндогенными субстратами, позволили решить эту проблему почти одновременно в двух лабораториях [122,123]. [c.673]

    Для индуцирования ЯМР-переходов необходимо дополнительно подавать на образец еще и РЧ поле Вь которое поляризовано перпендикулярно полю Во - статическому магаитному полю. РЧ поле создается передатчиком и через катушку-резонатор подается на образец. При этом в импульсном ЯМР передатчик создает мощные импульсы малой длительности (несколько мкс), а в с -спектроскопии на образец непрерывно подается сигаал малой мощности. СигаалЯМР детектируется либо той же (передающей) катушкой, либо приемной. Этот слабый сигнал, как правило, от 10 до 10" В, перед обработкой должен быть усилен, прежде чем будет проведена его регистрация с помощью фазочувствительного детектора. В с у-спектроскопии сигнал непосредственно подается на самописец, а в фурье-спектроскопии - на аналого-цифровой преобразователь (АЦП) в ЭВМ. Этот изменяющийся во времени сигнал подвергается фурье-преобразованию и вновь подается на устройство вывода информации - самописец или экран графического дисплея. [c.51]

Рис. 9.6.1. Схематическое представление преобразования трехмерной спектроскопии к двумерной с помощью аккордеонного метода. Вверху действительный обменный ЗМ-спектр может быть представлен набором 2М-спектров 8(оп, 012), записанных с систематическими приращениями величины тт. Диагональные пики монотонно спадают, а кросс-пики сначала возрастают, а затем с ростом тт уменьшаются. В середине при фурье-преобразованин относительно тт получается трехмерное частотное пространство 5(ш1, шт, шг). Если спектр хорошо разрешен вдоль оси шь то без какой-либо потери информации можио перейти к косой проекции (внизу). Аккордеонным методом точно такой же спектр можно получить непосредствеино и гораздо проще, при этом тт и / изменяются синхронно. (Из работы [9.3].) Рис. 9.6.1. <a href="/info/1012491">Схематическое представление</a> преобразования <a href="/info/250410">трехмерной спектроскопии</a> к двумерной с помощью <a href="/info/122669">аккордеонного метода</a>. Вверху действительный обменный ЗМ-спектр может быть <a href="/info/92622">представлен набором</a> 2М-спектров 8(оп, 012), записанных с систематическими <a href="/info/65284">приращениями величины</a> тт. Диагональные пики монотонно спадают, а <a href="/info/122653">кросс-пики</a> сначала возрастают, а затем с ростом тт уменьшаются. В середине при фурье-преобразованин относительно тт получается трехмерное <a href="/info/135362">частотное пространство</a> 5(ш1, шт, шг). Если спектр хорошо разрешен вдоль оси шь то без какой-либо <a href="/info/25343">потери информации</a> можио перейти к <a href="/info/250235">косой проекции</a> (внизу). <a href="/info/122669">Аккордеонным методом</a> точно такой же спектр <a href="/info/1715115">можно получить</a> непосредствеино и гораздо проще, при этом тт и / изменяются синхронно. (Из работы [9.3].)
    В методах последовательной выборки по линиям выделяется колонка из элементов объема. С помощью линейного градиента поля, приложенного вдоль осевой линии колонки, можно получить необходимый разброс частот. Один эксперимент после преобразования Фурье дает информацию одновременно обо всей линии. Используя преимущества мультиплексности фурье-спектроскопии, можно достичь существенной экономии времени по сравнению с методами чувствительной точки. Различные методы линейного сканирования, описанные в этом разделе, отличаются способами селективного возбуждения или регистрации чувствительной линии . [c.642]


Смотреть страницы где упоминается термин Преобразование Фурье в спектроскопии ЯМР ЯМР: [c.134]    [c.347]    [c.18]    [c.120]    [c.518]    [c.11]    [c.41]    [c.88]    [c.41]    [c.88]    [c.638]   
Руководство по ядерному магнитному резонансу углерода 13 (1975) -- [ c.30 , c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Преобразование

Преобразование Фурье

Фураи

Фурил

Фурье



© 2025 chem21.info Реклама на сайте