Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Импульсная спектроскопия фурье-преобразованием

    В настоящее премя широко используют импульсные методы с последующей математической обработкой (главным образом преобразование Фурье), что позволяет получить ту же спектральную информацию, как и в обычном эксперименте с медленным прохождением. Импульсные методы более эффективны, их применение сокращает время измерений и существенно улучшает отношение сигнала к шуму. Идея применения Фурье-преобразования для ЯМР-спектроскопии заключается в том, что этот математический метод позволяет разложить колебания на его спектральные компоненты. Таким образом, фурье-преобразование используется [c.88]


    До недавнего времени в распоряжении экспериментаторов преобладали приборы ЯМР непрерывного режима, когда ядра с различными резонансными соотношениями поле частота последовательно возбуждаются за счет развертки поля или частоты. Эти приборы не позволяют решать сложные задачи на многих ядрах с достаточной чувствительностью и точностью измерений, поэтому вытесняются приборами нового поколения, где реализуется импульсная фурье-спектроскопия ЯМР —форма ЯМР с широкополосным возбуждением. Образец облучается последовательно одним или большим числом импульсов, причем импульсы радиочастотной мощности разделены одинаковыми или разными временными интервалами, и после воздействия импульсных последовательностей наблюдается усредненный спад свободной индукции (ССИ), который превращается в частотный спектр путем фурье-преобразования. [c.734]

    Значительное уменьшение времени на проведение эксперимента (ср. табл. 7-1) можно ожидать от применения импульсных методов [29]. При обычной работе спектрометра теряется огромное количество времени. Рассмотрим спектрометр, в котором развертка спектра осуществляется путем изменения частоты приложенного сигнала. В любой момент времени получаемая информация отвечает только одной точке спектра, соответствующей значению частоты в данный момент. Если бы можно было одновременно снимать весь снектр (например, путем одновременного использования нескольких сигналов разных частот в многоканальном спектрометре), то сбор данных можно было бы осуществить гораздо быстрее, чем в обычном спектрометре. Оказывается такой метод можно осуществить, используя специальные радиоимпульсы. Получающийся при этом спектр представляет собой фурье-преобразование обычного спектра поглощения, который можно восстановить с помощью соответствующих вычислений. По этой причине описанный метод часто называют спектроскопией фурье-преобразования. В настоящее время для реализации этого метода требуется довольно сложное оборудование, но большая экономия времени, даваемая методом, может явиться стимулом к изучению Способов его упрощения. [c.321]

    Так называемые широкие линии в спектрах ЯМР могут иметь ширину до 1Q5 Гц. Возможностью регистрировать ЯМР спектры практически с любой шириной линий обладают современные импульсные спектрометры с фурье-преобразованием сигнала ССИ. Для записи линий с шириной порядка 10 Гц используют иногда и стационарные спектрометры с регистрацией первой производной сигнала, например, при изучении спектров ЯМР твердых тел. Практически всегда запись первой производной кривой поглощения практикуется в спектроскопии ЭПР (см. гл. П1). [c.17]


    Методом ЯМ[ исследуют практически все комплексные соединения, потому что у каждого элемента имеется изотоп с магнитным ядром, а применение импульсной ЯМР-спектроскопии с преобразованием Фурье позволяет получать спектры высокого разрешения для магнитных ядер изотопов при их естественном содержании. Ис- [c.312]

    Еще один переворот в области ЯМР происходит в наши дни. Ои обусловлен внедрением надежных сверхпроводящих магнитов совместно с импульсными методиками и преобразованием Фурье. Разрешение и чувствительность приборов выросли настолько, что исследования можно проводить на микрограммовых количествах вещества. Но, возможио, еще более важное значение имеет развитие импульсных методик, позволяющих в небывалой степени контролировать намагниченность образца и управлять ею. В результате с помощью импульсной спектроскопии ЯМР химики получают, вероятно, более обширную структурную информацию, чем с использованием любого другого отдельно взятого аналитического метода. [c.11]

    Эти соображения по поводу выборки имеют важные практические следствия для экспериментальной импульсной спектроскопии ЯМР. Предположим, что мы хотим иметь разрешение 0,2 Гц в эксперименте с временем регистрации Л, = 5 с. Если мы наблюдаем протоны при 500 МГц, то желательно иметь ширину спектра около 5000 Гц. Следовательно, в соответствии с критерием Найквиста необходимо проводить выборку сигнала каждые 1/10000 с ( = 0,1 мс). В результате за 5 с будет получено 50000 чисел, которые нужно запомнить и для которых впоследствии нужно выполнить преобразование Фурье. На большинстве современных спектрометров можно легко обрабатывать такие массивы данных, но при выполнении двумерных экспериментов, в которых чнсло точек возрастает в квадрате, оцифровка на основе этого принципа становится немыслимой. [c.36]

    Из приведенного обсуждения становится ясным, что при использовании импульсной фурье-спектроскопии возникает ряд осложнений. Одно из них, наиболее часто встречающееся, относится к отраженным сигналам, возникающим при неправильном выборе диапазона регистрируемых частот относительно фактического спектра. Допустим, что вне этого диапазона частот имеется сигнал с более высокой частотой Дубу. Тогда, согласно теореме Найквиста, этот сигнал не будет регистрироваться. Однако можно показать, что точки, относящиеся к этой частоте, будут рассматриваться компьютером так, как будто они принадлежат частоте Ду — бу. Отсюда и происхождение термина отраженные сигналы , так как фурье-преобразование приводит к появлению сигнала в частотной области при Ду — 6у. Происхождение отраженных сигналов иллюстрирует рис. IX. 25. [c.340]

    Импульсная разностная фурье-спектроскопия ЯМР—форма импульсной фурье-спектроскопии ЯМР, в которой до преобразования Фурье из сигнала ССИ определяются разности частот между сигналами образца и сильным эталонным сигналом. [c.441]

    В наши дни большинство спектрометров ЯМР высокого разрешения работают в режиме Фурье-преобразования, при котором возбуждение создается мощными неселективными радиочастотными (РЧ) импульсами. Наиболее часто встречающейся проблемой при работе на таких спектрометрах является подавление резонансных сигналов растворителя. Поэтому возникает необходимость возбуждения одного ядра или одной спектральной линии спинового мультиплета без возмущения остальной части молекулы. После перехода импульсной Фурье-спектроскопии к своему новому этапу развития (двумерный эксперимент), роль и популярность селективных методов стали быстро возрастать. [c.4]

    Импульсная спектроскопия ЯМР с фурье-преобразованием [c.126]

    Очевидно, существует тесная связь между импульсными откликами высших порядков и многомерной спектроскопией, как показано в гл. 6—10. Фурье-преобразование импульсной характеристики Аг-го порядка позволяет получить Аг-мерную частотную характеристику, т. е. Аг-мерный комплексный спектр Нк(оц, ед)-  [c.144]

    Интегральные интенсивности имеют важное значение для химических приложений спектроскопии ЯМР в качестве источника сведений о количестве данного вещества (количественный анализ гл. 1, 5). В спектроскопии ЯМР — Н при регистрации спектров в импульсном режиме с Фурье-преобразованием возникает, однако, ряд ограничений, затрудняющих использование интегральных интенсивностей в количественном анализе. [c.220]

    Импульсная спектроскопия значительно сокращает время, необходимое для получения спектра ЯМР спад индуцированного сигнала продолжается несколько секунд или долей секунды записанный в памяти ЭВМ, он преобразуется в спектр в частотном представлении за несколько секунд. Однако еще в большей мере преимущества импульсной методики становятся очевидными при необходимости накопления/полезных сигналов (слабая концентрация вещества, малая чувствительность для данного ядра и т. д.). Накопление спектров и сложение их в памяти ЭВМ позволяет улучшить соотношение сигнал шум в суммарном спектре в у/п раз, где и-число накоплений. В режиме развертки по частоте для накопления ста спектров в цифровом накопителе требовалось время порядка часа. В импульсном режиме накопление СИС обычно идет с частотой повторения 0,5-5 с, и для накопления ста спектров во временном представлении необходимо 1-10 мин, после чего следует Фурье-преобразование суммарного СИС в спектр в частотном представлении. [c.326]


    В последнее время для съемки спектров широко применяется импульсная спектроскопия с фурье-преобразованием в сочетании с накопителем (разд. 8.4.2).— Прим. перев. [c.152]

    При сочетании метода импульсной спектроскопии с фурье-преобразованием и накопителя удается за один и тот же интервал времени улучшить отношение сигнал/ шум приблизительно в 100 раз [51].  [c.165]

    Благодаря огромной экономии времени по сравнению с обычным методом импульсная ЯМР-спектроскопия является особенно удобным методом для изучения коротко живущих соединений или промежуточных продуктов реакции [118, с. 106]. Если обычная стационарная ЯМР-спектроскопия позволяет изучать процессы в диапазоне 10-1—.10 С"то импульсные методы распространяются и на скорости обмена до 10 с [118, с. 156] и поэтому они нашли широкое применение в химической кинетике для измерения энергий активации. Импульсная спектроскопия (с Фурье-преобразованием) открыла новые возможности перед ЯМР-спектроскопией иных ядер, чем протон или (см. далее). Любопытно, что если в одном обзоре 1971 г. говорится, что в будущем она, вероятно, позволит превратить ЯМР-спектроскопию в такой же рутинный метод, каким сейчас является ПМР-спектроскопия [120, с. 59], то в обзоре 1974 г. об этом уже сказано в прошедшем времени [121, с. 83]. [c.266]

    Обычно С-спектры регистрируют с помощью импульсной фурье-спектроскопии. (Та же техника пригодна и для снятия спектров ЯМР иных ядер, в том числе и Н.) При этом с помощью мощного высокочастотного импульса возбуждают все резонансные частоты ядер одного вида (например, С). После этого кратковременного возбуждения ядра возвращаются в равновесное состояние. Связанное с этим процессом падение индуцированной намагниченности (спад свободной индукции, ССИ) измеряют перпендикулярно к полю Но (рис. 92). ССИ — это сложная интерферограмма, состоящая из множества перекрывающихся колебаний. После применения математической операции, называемой фурье-преобразованием, получают обычный [c.152]

    Эта программа иллюстрирует аппроксимацию сложной периодической функции суммой тригонометрических функций с различными периодами. Речь идет об известном фурье-преобразовании, которое широко используется для обработки данных, полученных импульсными методами, в ИК- и ЯМР-спектроскопии. [c.45]

    Исследование красителей методом ЯМР представляет некоторые трудности, которые, хотя и не уникальны для этого класса химических веществ, все же более выражены, чем для многих других классов. Многие красители имеют сложное или очень сложное строение и очень слабо растворимы в растворителях, которые применяются в методе ЯМР. Кроме того, иногда количество исследуемого вещества очень мало. Справляться спектроскописту с этими проблемами помогают два относительно новых усовершенствования ПМР в сильных магнитных полях [3] и импульсная спектроскопия ЯМР с фурье-преобразованием (фурье-спектроскопия, ФС) [c.218]

    Для идентификации растворителей и реакционноспособных разбавителей, содержащихся в эпоксидных смолах, без выделения этих продуктов использовали ЯМР С с фурье-преобразованием [512]. В работе [513] описан экспресс-метод ПМР, который позволяет определять эквивалентную массу эпоксида в эпоксидных смолах. Химический состав и структуру углеводородных и эпоксидных смол исследовали методами ИКС и ЯМР [514], а также масс-спектроскопии высокого разрешения [515] после фракционирования методом гель-проникающей хроматографии. Импульсный ЯМР использовали [516] для измерения Tg структурированных эпоксидных смол. [c.534]

    Монография английского ученого представляет собой руководство по ЯМР, доступное по уровню изложения исследователю, не имеющему специальной подготовки по спектроскопии. В ней наряду с изложением основ стацдартньис методов ЯМР (импульсный ЯМР и фурье-преобразование сигналов свободной прецессии, методы подготовки образцов, выбор растворителя и т.д.) рассматриваются новые методики одномерной (ядердый эффект Оверхаузера и т.п.) и двумерной спектроскопии ЯМР. Изложение материала имеет ярко выраженную практическую направленность, приведены многочисленные примеры решения структурных химических задач. [c.4]

    При напряжении, изменяющемся в пределах 20 В, разрешение АЦП, равное 12 бит, означает, что напряжение измеряется с шагом 10 000/(2 —1)=2,44 мВ. Получаемые при этом целые числа преобразуются в двоичные числа. Входные данньк с амплитудой, меньшей единичного шага (в нашем случа 2,44 мВ), вообще не воспринимаются АЦП. Длина слова АЦП, так же как и длина слова компьютера, является очень важной характеристикой, определяющей доступный динамический диапазон, т. е. способность детектировать слабые сигналы в присутствии сильных сигналов. В рассматриваемом примере 12-битового АЦП предел задается отношением интенсивностей 2 1 = ==4096 1 для АЦП с разрешением 4 бит это отношение составляет только 16 1. Поэтому желательно использовать весь динамический диапазон АЦП, с тем чтобы правильно описывать спал свободной индукции. С другой стороны, отсюда также следует, что при накоплении данных длина слова компьютера должна превосходить разрешение АЦП, в противном случае будет происходить переполнение памяти с последующей потерей информации, В этом состоит специфика эксперимента ФП-типа, которая следует из того факта, что спектр в частотной области является результатом преобразования полного сигнала спада свободной индукции. Если в стационарном режиме переполнение при накоплении (см. гл. III) влияет лишь на отдельный участок спектра, например на интенсивный пик растворителя, то в импульсной фурье-спектроскопии обрезание части сигнала спада свободной индукции возмущает сигнал во временном представлении, чтс может полностью исказить сигнал в частотном представлении. [c.336]

    Импульсная спектроскопия с преобразованием Фурье применялась эпизодически в конце 50-х г. В последующие 10 лет импульсные радиоспектрометры выпускались мелкими сериями в СССР, ФРГ и Японии, однако они не вызывали интереса у исследователей, работающих методом ЯМР высокого разрешения, так как отклик многоспиновой системы на радиочастотный импульс превращается в спектр лишь после трудоемких вычислений [118, с. 5], Таким образом, развитию этого метода препятствовало отсутствие дешевых и компактных вычислительных машин. В 1965 г. был предложен алгоритм быстрого преобразования Фурье, который оказался пригодным для использования в мини-ЭВМ, бурный рост производства которых происходил как раз во второй половине 60-х годов... В 1971 г. появились первые публикации о научных исследованиях, выполненных на серийных Фурье-спектрометрах. Полностью подтвердилось, что новая техника дает возможность регистрировать спектры ЯМР всех магнитных ядер химических элементов при беспрецедентно малых концентрациях (или за очень короткое время) [118, с. 6]. [c.267]

    В последние годы в практике все шире используется импульсная Фурье-спектроскопия (ЯМР на ядрах С). В ЯМР-спектрометрах с Фурье-преобразованием в приемнике детектируется не сигнал поглощения или дисперсии (что имеет место в стационарных спектрометрах без Фурье-преобразова-ния), а сигнал спада свободной индукции (ССИ), который генерируется путем воздействия на образец ВЧ-импульсов определенной частоты. Наблюдение поведения системы ядерных спинов проводится по окончании каждого импульса, т. е. после выключения высокочастотного поля (ВЧ). Сигнал, детектируемый в приемнике, называют сигналом свободной индукции. [c.35]

    Ядерный магнитный резонанс веществ, находящихся в растворе, позволил исследовать параметры спектра и получил название ЯМР-спектроскопии высокого разрешения. К середине 50-х годов, были разработаны теоретические принципы применения метода для самых разнообразных задач химии. В настоящее время быстро развивающаяся техника и методы эксперимента в ЯМР-спектроскопии выявили необходимость использования импульсных методов-наряду со стационарными. Разработка серийных устройств, регистрирующих спектры высокого разрешения методом Фурье преобразования, дало возможность сократить время эксперимента и в ряде случаев получать более обширную информацию по сравненик> с неимпульсными методиками. Метод ЯМР (как в импульсном, так и в стационарном варианте) позволяет определить константы равновесия, константы скоростей и термодинамические характеристики процессов комплексообразования, конформационных переходов и протонного обмена. [c.253]

    Спектроскопия ЯМР высокого разрешения как наиболее информативный и мощный метод структурных и дагаамических исследований столь глубоко пронизывает все химические дисциплины, что без овладения ее основами нельзя рассчитывать на успех в работе в любой области химии. Поразительная особенность этого метода необычайно быстрое его развитие на протяжении всех последних 45 лет с момента открытия ЯМР в 1945 г. События последних 10 лет завершились полным обновлением методического арсенала и аппаратуры ЯМР. Основу приборного парка сейчас составляют спектрометры, оснащенные мощными сверхпроводящими соленоидальными магнитами, позволяющими создавать постоянные и очень однородные поля напряженностью до 14,1 Т. Каждый из таких приборов представляет собой сложный измерительно-вычислительный комплекс, содержащий помимо магнита и радиоэлектронных блоков одрш или дна компьютера, обладающие высоким быстродействием, большими объемами оперативной памяти и дисками огромной емкости. Импульсные методики возбуждения и регистрации сигналов с последующим быстрым фурье-преобразованием окончательно вытеснили режим непрерывной развертки, доминировавший в ЯМР до конца 70-х годов. Как правило, получаемая спектральная информащ1я перед ее отображением в виде стандартного спектра подвергается сложной математической обработке. На несколько порядков возросла чувствительность приборов. Методы двумерной спектроскопии и другие методики, реализующие сложные импульсные последовательности при возбуждении систем магнитных ядер, кардинально изменили весь методический арсенал исследователей и открыли перед ЯМР новые области применений. Эти новые и новейшие достижения уже нашли свое отражение в нескольких монографиях, появившихся за рубежом и в переводах на русский язык. Но они рассчитаны иа специалистов с хорошей физико-математической подготовкой. Между тем подавляющее большинство химиков-экспериментаторов ие обладают такой подготовкой. Более того, для практического приложения современного ЯМР вполне достаточно ясного понимания лишь основных физических пришдапов поведения ансамблей магнитных ядер при воздействии радиочастотных полей. Это понимание обеспечивает химику правильный выбор метода [c.5]

    Среди факторов, определяющих величину константы экранирования протонов, в начале разд. 1 упоминалось и влияние растворителя. В общем можно полагать, что все эффекты, которые мы до сих пор обсуждали как внутримолекулярные, проявляются также и на межмолекулярном уровне. Например, установлено, что резонансные сигналы веществ, растворенных в ароматических растворителях, проявляются в более сильном поле, чем в растворителе алифатической природы. Этот эффект был приписан диамагнитному кольцевому току бензола и его производных. Подобное же влияние соседних молекул, связанное, однако, либо с экранированием, либо с дезэкранированием, может проявляться в результате магнитной анизотропии кратных связей или влияния электрического поля молекул с большими дипольными моментами. Эффекты растворителя становятся особенно значительными, если межмолекулярные взаимодействия в растворе приводят к образованию специфических комплексов. За счет диполь-дипольных или вандерваальсовых взаимодействий некоторые взаимные пространственные ориентации взаимодействующих молекул становятся более предпочтительными, чем другие. В результате могут наблюдаться специфические изменения резонансных частот отдельных протонов растворенного вещества. Их в свою очередь можно использовать для получения сведений о строении таких комплексов. Поэтому спектроскопия ЯМР оказалась важным методом исследования межмолекулярных взаимодействий. Изменения химических сдвигов под влиянием растворителя обычно меньше 1 м. д. Мы уже рассмотрели в гл. П1 их специальные применения и последствия для резонансных частот эталонных веществ. Для избежания осложнений, вызванных влиянием растворителя, рекомендуется использовать такие инертные растворители, как тетрахлорид углерода или циклогексан. Можно исключить, кроме того, и концентрационные эффекты, если провести измерения при нескольких концентрациях вещества и экстраполировать данные к бесконечному разбавлению. Измерения в газовой фазе, где межмолекулярные взаимодействия сводятся к минимуму, стали осуществимы и для веществ с высокой упругостью паров только после развития импульсных Методов с фурье-преобразованием. [c.109]

    Разработка импульсного метода записи спектров ЯМР с фурье-преобразованием в 1960-х годах гюзднее явилась основой значительного числа экспериментальных методик, о которых едва можно было мечтать в то время. В рамках этого раздела мы гюпытались лишь кратко обрисовать принципы трех наиболее важных и используемых из этих подходов ВЕРТ-эксперимент и 2В-методы —Н,Н-С08 и Н,С-С08 , не вникая в детали. Арсенал разнообразных методов (с обилием сокращений, приводящих в замешательство даже спехщалистов) продолжает расти. В рамках полуклассической модели, представленной в разд. Свободный спад индукции и релаксация (разд. 9.3.2, с. 212), все эти процедуры основаны на управлении вектором макроскопической намагниченности посредством радиочастотных импульсов, перемежающихся с периодами сбора данных. Интересующиеся читатели могут найти детали в обширной литературе. Та невероятная скорость, с которой развивалась и продолжает развиваться спектроскопия ЯМР, делает этот метод [c.253]

    В настоящее время разработаны такие приборы, на которых можно очень быстро регастрировать и спектры ЯМР 43 (при естественной концентрации >зС), даже если масса образца составляет всего лишь 20 мг. Наиболее очевидные пути повышения интенсивности сигнала заключаются в использовании более сильных магнитных полей (поскольку ос Вд) и методик многократного сканирования, которые благодаря накоплению и усреднению спектров позволяют снизить уровень фона. Усиление сигнала пропорционально квадратному корню из числа сканирований спектра так, 64-кратное сканирование обеспечивает 8-кратное усиление, но для усиления сигаала еще в 8 раз потребуется уже 4032 (т.е. всего 4096) сканирования. Спектроскопия ЯМР менее чувствительных ядер начала развиваться по сути дела только после разработки принципиально новых приборов - импульсных спектрометров ЯМР с фурье-преобразованием. [c.125]

    В импульсной спектроскопии ЯМР с фурье-преобразованием за время между импульсами успевают релаксировать ие все 5щра По этой причине спектроскопия ЯМР % ие является количественным методом в той же мере, как, например, спектроскопия ЯМР >Н, и на спектрах кривые интегральной интенсивности обычно не вычерчиваются, Полукояи-чественные взаимосвязи сущеструют только между сигналами атомов углерода, находящихся в аналогичном химическом окружении примером может служить отношение интенсивностей линий (около 2 2 1) резонансных сигналов ароматических атомов углерода на рис. 4.28. Можно добиться и количественных соотношений мея интенсивностями линий, если к изучаемому раствору добавить ацетилацетонат хрома (III). Парамагнитные ядра хрома повышают скорость релаксации, ие вызывая чрезме]№ого уширения линий. Химики неохотно используют этот реагент, поскольку его не всегда легко отделить от изучаемого вещества. [c.129]

    Для индуцирования ЯМР-переходов необходимо дополнительно подавать на образец еще и РЧ поле Вь которое поляризовано перпендикулярно полю Во - статическому магаитному полю. РЧ поле создается передатчиком и через катушку-резонатор подается на образец. При этом в импульсном ЯМР передатчик создает мощные импульсы малой длительности (несколько мкс), а в с -спектроскопии на образец непрерывно подается сигаал малой мощности. СигаалЯМР детектируется либо той же (передающей) катушкой, либо приемной. Этот слабый сигнал, как правило, от 10 до 10" В, перед обработкой должен быть усилен, прежде чем будет проведена его регистрация с помощью фазочувствительного детектора. В с у-спектроскопии сигнал непосредственно подается на самописец, а в фурье-спектроскопии - на аналого-цифровой преобразователь (АЦП) в ЭВМ. Этот изменяющийся во времени сигнал подвергается фурье-преобразованию и вновь подается на устройство вывода информации - самописец или экран графического дисплея. [c.51]

    Функциональные свойства полимерных пленок из этиленового сополимера зависят от числа и типа коротких ветвлений. Тест ASTM D5017 [48] позволяет измерить их для этиленового сополимера с пропиленом, 1-бутеном, 1-октеном и 4-метил-1-пентеном. С этой целью полимерный образец (около 1,2 г) рассеивается в растворителе (1,5 мл) и дейтерированном растворителе (1,3 мл), помещается в 10 мм трубку спектрометра ядерного магнитного резонанса (ЯМР) и анализируется при высоких температурах методом ЯМР-спектроскопии, как правило, в импульсном режиме с Фурье-преобразованием в поле с магнитной индукцией не менее 2,35 Тл. Спектры записываются при таких условиях, когда отклики каждого химически различного углерода идентичны. Интегрированные отклики углеродов, входящих в различные сомономеры, используются для расчета сополимерного состава. Результат представляется как мольный процент алкенов и/или ветвей на 1000 атомов углерода. [c.324]

    До сих пор большинство химических приложений ЯМР связано с изучением жидкостей или растворов, поскольку усреднение окружения, обусловленное беспорядочным движением молекул в жидкости (броуновское движение), позволяет обнаруживать очень малые различия в химическом строении. Развитие ЯМР сдерживалось из-за необходимости создания мощных магнитных полей высокой однородности. В связи с этим обстоятельством существовали определенные ограничения и на размер образца, и на чувстви ельность определения. В 60-х и 70-х гг, благодаря развитию технологии, в том числе благодаря разработке сверхпроводящих магнитов, напряженность и однородность магнитных полей постоянно возрастали. Развитие новых методов, таких как методы фурье-преобразования, методы высокого разрешения в твердом теле, разнообразные импульсные измерения, открыло новые горизонты перед спектроскопией ЯМР. [c.221]

    Очевидным выводом из выщеизложенного является то, что в будущем для контроля и управления отдельными контрольно-измерительными приборами будут использоваться малые специализированные ЭВМ, а также специально разработанная аппаратура в свою очередь связанная с более мощными ЭВМ. Последние предназначены для выполнения основных вычислительных операций, учета и выдачи документации. В таких системах существует определенная иерархия ЭВМ. Маргошес [12] проанализировал как технические, так и экономические преимущества встраивания ЭВМ в измерительную аппаратуру, в частности в ИК- и ЯМР-спектрометры. Использование встроенной ЭВМ является единственным практическим методом регистрации в фурье-спектроскопии. При этом по сравнению с обычными спектрометрами имеется еще два преимущества во-первых, детектор одновременно регистрирует излучение всех длин волн и, во-вторых, конструкция спектрометра упрощается, а скорость отдельных измерений увеличивается. Эти преимущества позволяют фурье-спектрометру регистрировать спектр значительно быстрее, чем обычному спектрометру. Используя усредненный сигнал, можно улучщить отношение сигна ч шум и, следовательно, получить более точный спектр. Обсуждается также применение фурье-преобразования в импульсной ЯМР-спектрометрии. Этот метод в сочетании с усреднением сигнала значительно расширяет возможности ЯМР. Так, например,спектр .С можно получить на образцах, не обогащенных этим изотопом. Применение обычного, не импульсного метода измерения спектра изотопа потребовало бы почти года машинной обработки. Маргошес показал также, что несмотря на более высокую стоимость аппаратуры со специализированными ЭВМ, возросшая стоимость единичного анализа окупается более высокой производительностью используемой аппаратуры. [c.364]

    Строение полученных соединений было изучено методом ЯМР. Поскольку протонный спектр адамантановой группы крайне сложен и не поддается расшифровке, для исследования соединений (I—IV) была использована спектроскопия углеродного магнитного резонанса. Углеродные спектры были измерены на частоте 25.2 Мгц в режиме импульсного Фурье-преобразования с шумовой развязкой от протонов полученные значения химических сдвигов приведены в таблице. Отнесение сигналов сделано на основании экспериментов по неполной спин-спиновой развязке от протонов и на основании литературных аналогий [6]. Выбор между сигналами р- и 8-углеродных атомов не был сделан ввиду близости их химических сдвигов и одинаковой мультиплетности в неразвязанных спектрах. [c.34]

    Предыдущий анализ показал, что достоинства импульсных методов не связаны непосредственно с применением Фурье-преобразований. Аналогичный выигрыш во времени измерения и чувствительности можно получить с помощью спектрометра, в котором для получения Nr разрешаемых элементов используется не последовательное оканирование спектра, а метод одновременного возбуждения частотами, число которых равно Nr. Но серийный выпуск подобных стационарных спектрометров в настоящее время, по-видимому, бесперспективен. Поэтому усилия разработчиков направлены на совершенствование метода и техники Фурье-спектроскопии. [c.138]

    В этом разделе я хочу показать, как довольно абстрактные идеи разд. 2.3 применяю ч я на практике. Мы уже убедились, что измерять отклик ЯМР (ССИ), следующий за импульсом, весьма выгодно, так как эксперимент можно провести быстрее, Я утверждал, что у нас есть реальные возможности выделять из полученных данных известные спек1ральные частоты и что преобразование Фурье является ианболее общим способом для этого. Эта идея перехода от одного вида представления данных к другому составляет основную трудность для тех, кто впервые сталкивается с импульсной фурье-спектроскопией ЯМР, Лучший способ преодолеть ее-посидеть у спектромегра н понаблюдать за ходом вычислений. Если у пас есть шанс поступить таким образом, то не упустите его. Вы можете кое-что увидеть и понять. [c.31]


Смотреть страницы где упоминается термин Импульсная спектроскопия фурье-преобразованием: [c.18]    [c.518]    [c.41]    [c.41]    [c.204]    [c.134]   
Ядерный магнитный резонанс в органической химии (1974) -- [ c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Преобразование

Преобразование Фурье

Фураи

Фурил

Фурье

ЯМР-спектроскопия импульсная



© 2025 chem21.info Реклама на сайте