Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пролин в белках

    Расположение, или последовательность, аминокислот вдоль белковой цепи определяет первичную структуру белка. Первичная структура ответственна за неповторимую индивидуальность белка. Замена хотя бы одной аминокислоты может привести к изменению биохимических свойств белка. Например, серповидноклеточная анемия представляет собой генетическое (наследственное) заболевание, вызываемое единственной ошибкой в построении белковой цепи гемоглобина. Эта белковая цепь содержит 146 аминокислот. Первые семь аминокислот в нормальной цепи-валин, гистидин, лейцин, треонин, пролин, глутаминовая кислота и снова глутаминовая кислота. У человека, страдающего серповидноклеточной анемией, шестая аминокислота в этой цепи-валин, а не глутаминовая кислота. Замещение всего одной аминокислоты с кислотной функциональной группой в боковой цепи на аминокислоту с углеводородной боковой цепью настолько изменяет растворимость гемоглобина, что в конечном итоге приводит к нарушению нормального кровообращения (см. также разд. 12.8, ч. 1). [c.448]


    В молекулах белков обычно содержится 20 аминокислот , и все они, за исключением пролина, отвечают приведенной выше общей формуле L-аминокислот. [c.187]

    Для построения пространственной структуры белка пептидные цепи должны принять определенную, свойственную данному белку конфигурацию, которая закрепляется водородными связями, возникающими между пептидными группировками отдельных участков молекулярной цепи. По мере образования водородных связей пептидные цепи закручиваются в спирали, стремясь к образованию максимального числа водородных связей и соответственно к энергетически наиболее выгодной конфигурации. Но образованию правильной спирали часто мешают силы отталкивания или притяжения, возникающие между группами аминокислот, или стерические препятствия, например за счет пирроли-диновых колец пролина и оксипролина, которые заставляют пептидную цепь резко изгибаться и препятствуют образованию спирали на некоторых ее участках. Далее отдельные участки макромолекулы белка ориен- тируются в пространстве, принимая в некоторых случаях достаточно [c.373]

    Белки свеклы имеют кислотные свойства (точка коагуляции при pH 3,5), содержат больше кислых аминокислот — глутаминовую, аспарагиновую и др. Они гидролизуют с образованием низкомолекулярных пептидов и аминокислот аланин- валин, гликокол, лейцин, изолейцин, фенилаланин, -аминомасляная, тирозин, серии, треонин, цистин, метионин, пролин, триптофан, аспарагиновая, глутаминовая, гистидин. [c.6]

    Биохимия его действия заключается в функционировании ферментов, катализирующих гидроксилирование лизина и пролина при образовании коллагена в гидроксилировании дофамина с образованием норадреналина в метаболизме холестерина (возможно, что также реакциями гидроксилирования) в метаболизме катехоламинов и стероидных гормонов в предохранении глутатиона и 5Н-групп белков от окисления в восстановлении [c.270]

    Если бы а-спираль была единственным типом вторичной структуры белков, то все они были бы жесткими палочковидными образованиями. Поскольку это не так, следует заключить, что а-спирали составляют лишь отдельные участки полипептидных цепей. Отклонение от а-спиральной структуры вызвано разнообразными факторами к ним относится содержание пролина, оксипролина и (или) валина в пептидной цепи. После образования пептидной связи амидный водород отсутствует в пролине и оксипролине, и эти аминокислотные остатки не могут участвовать в образовании водородных связей в а-спирали. Изопропильная группа валина, по-видимому, ослабляет а-спираль из-за стерического отталкивания. [c.408]


    Н. И. Гаврилов предложил проводить электровосстановление белка. Им и Т, И. Орловой было показано на моделях, что пептидная связь восстанавливается только в том случае, если она образована пролином. Связанная с пролином аминокислота превращается в аминоспирт. который можно выделить после гидролиза остальной пептидной цепи. [c.516]

    В табл. 2-2 приведены структурные формулы боковых цепей аминокислот, обычно встречающихся в белках (формула пролина приведена полностью). Даны также сокращенные трехбуквенные обозначения аминокислот, используемые при выписывании аминокислотных последовательностей пептидов и белков, а также однобуквенные сокращения, принятые в работах по эволюции белков и при составлении программ для вычислительных машин. [c.83]

    Гл и а д н н ы (проламины). Эти белки, в отличие от других, растворимы в 70—80%-ном спирте. Они богаты пролином и глутаминовой кислотой. К ним принадлежат глнаднн пшеницы, зеин кукурузы и гордени ячменя. [c.399]

    Из природных вешеств, являющихся производными пиррола, здесь следует упомянуть пролин, оксипролин и триптофан, входяпдие в состав белков, индикан, представляющий собой основное вещество индиго, многие алкалоиды, такие, как никотин, атропин и кокаин, а также красящее вещество крови и хлорофилл. [c.969]

    По форме молекул белки можно приблизительно делить на две группы — склеропротеины и сферопротеины. Первые имеют волокнистую структуру и служат строительным материалом тканей. К ним относится коллаген, содержащийся в коже, сухожилиях, хрящах и костях. Коллаген построен в основном из глицина, пролина и оксипролина. При частичном гидролизе он превращается в желатину. Коллаген составляет почти одну треть всех животных белков. Другие склеропротеины — кератин, содержащийся в волосах, ногтях, перьях и шерсти, и фиброин из натурального шелка. В мышечных волокнах присутствуют главным образом белки миозин и актин. Они не растворяются в воде и активно участвуют в механохимических процессах, обусловливающих работу мышц. Поскольку тела млекопитающих примерно на 40% состоят из мышц, оба этих белка относятся к наиболее распространенным органическим соединениям в организмах млекопитающих. [c.194]

    Изображая строение грамицидина С, мы воспользовались принятыми в химии белков сокращенными обозначениями аминокислот (лей — лейцин, фал — фенилаланин, про— пролин, вал — валин, ори — орнитин). При такой записи считают, что начало сокращенного обозначения соответствует аминному концу молекулы, конец— ее карбоксильрюму концу, т. е. обозначение, например, вал расшифровывается как —ЫН—СН(СзН7)—СО—. [c.343]

    Ряд характерных реакций белков обусловлен нахождением феноламинокислот (тирозин—стр. 503) и аминокислот, включающих гетероциклические системы триптофан (стр. 586), пролин (стр. 587) и др. [c.395]

    Аминокислоты (гликоколь, цистин , пролин, триптофан, аргинин, гистидин, epHH ), а также ди- и полипептиды реагируют своими аминогруппами, образуя соответствующие сульфокислоты, замещенные у азота . Последняя реакция была применена для определения строения белков и продуктов их расще-пления °. [c.267]

    Коллаген — основной фибриллярный белок кожи, сухожилий, хрящей, костей, роговицы глаза, стенок артерий и других тканей. Коллаге-новые фибриллы — важный компонент межклеточного вещества, цементирующего клетки в тканях (важными связующими веществами являются также гиалуроновая кислота и другие мукополисахариды). От большинства других белков коллаген отличается высоким содержанием остатков пролина и оксипролина, которые составляют 25% всех аминокислотных остатков, а также глицина, остатки которого составляют 34%. В процессе синтеза коллагена вначале образуется белок проколлаген. Он не содержит оксипролина и коллаген образуется пз него при гидроксилировании примерно половины остатков пролина. Для протекания реакции гидроксилирования необходим витамин С. [c.434]

    Трипсин 21 расщепляет пептидные связи, в образовании которых участвуют карбоксильные группы лизина и аргинина. К гидролизу трипсином устойчивы связи лизина и аргинина с пролином (лиз—про и арг—про). Замедление гидролиза этим ферментом наблюдается тогда, когда остатки лизина и аргинина находятся рядом со свободными а-амино- и а-карбоксильными группами, а также в участках полипептидной цепи с повышенным содержанием основных аминокислот (связи ЛИЗ—лиз, арг—арг, лиз—арг и арг—лиз расщепляются только частично). Селективность расщепления трипсином можно повысить путем блокирования e-NH2-rpynn лизина (например, ангидридами янтарной, малеиновой или цитраконовой кислот) или же гуанидиновых группировок аргинина (дикетоновыми реагентами, такими как диацетил, циклогександион, фенилглиоксаль и др.). Гидролизу трипсином могут подвергаться связи, образованные и остатками цистеина, после превращения его в аминоэтилцистеин обработкой белка этиленимином. [c.140]

    Реакцию белков и пептидов с ДНФБ и все последующие манипуляции следует проводить в темноте, так как ДНФ-производные на свету разлагаются. Необходимо также учитывать, что ДНФ-аминокисло-ты разрушаются и при кислотном гидролизе (особенно сильно разрушаются ДНФ-производные глицина, пролина, оксипролина, цистеина, триптофана, что требует дифференциальных условий гидролиза). [c.146]


    Результаты многочисленных исследований свидетельствуют о том что генетический код, установленный для Е. соИ, является универсальным. Так, например, в лабораториях Уитмана и Френкель-Конрата препарат РНК, экстрагированный из вируса табачной мозаики, обработали азотистой кислотой известно, что при этом происходит дезаминирование многих остатков цитозина с образованием урациловых остатков, в результате чего кодоны U U (серин) превращаются в UUU (фенилаланин). Аналогичным путем из кодона ССС (пролин) может образоваться СиС (лейцин). Оказалось, что при заражении растений табака препаратом РНК, обработанной азотистой кислотой, аминокислотная последовательность вирусного белка оболочки, выделенного из мутантных штаммов, действительно меняется [22]. Причем многие из происшедших изменений можно было точно предсказать исходя из данных, приведенных в табл. 15-3. Сходным образом, замены аминокислот в дефектных молекулах гемоглобина (рис. 4-17) в большинстве случаев могут быть обусловлены изменением только одного основания. Так, гемоглобин S может образовываться в результате одного из следующих изменений в седьмом кодоне GAA(Glu) GUA(Val) или GAG(Glu)- ->GUG(Val). Еще один аргумент в пользу универсальности генетического кода состоит в способности рибосом и молекул тРНК из Е.соН осуществлять трансляцию цепи мРНК, кодирующей синтез гемоглобина, и синтезировать при этом полноценный гемоглобин [23]. [c.195]

    КАЗЕИН (от лат. aseus-сьф), осн. белковая фракция коровьего молока относится к запасным белкам. Представляет собой смесь неск. фосфопротеидов (осн. компоненты-а , - и к-К.) сходной структуры. В коровьем молоке содержание К. составляет 2,8-3,5% по массе (от всех белков молока-ок. 80%), в женском-в два раза меньше. Содержание а -, - и к-К. от всего К. составляет соотв. 54,2, 30,1 и 13,3%. В фракцию К. входит также у-К. (2,5% от всего К.)-продукт частичного протеолиза -K., катализируемого протеиназой молока. Осн. компоненты К. имеют генетич. варианты, отличающиеся неск. аминокислотными остатками. Изучена первичная структура всех К. и их физ.-хим. св-ва. Эти белки имеют мол. массу ок. 20 тыс., изоэлектрич. точку (р/) ок. 4,7. Содержат повыш. кол-ва пролина (полипептидная цепь имеет -структуру), устойчивы к действию денатурантов. Остатта фосфорной к-ты (обычно в виде Са-соли) образ)тот сложноэфирную связь гл, обр. с гидроксигруппой остатков серина. Высушенный К.-белый порошок без вкуса и запаха, практически не раств. в воде и орг. р-рителях, раств. в водных р-рах солей и разб. шелочей, из к-рых выпадает в осадок при подкислении. [c.284]

    Образующееся соед. П имеет фйолетово-синюю окраску (>. 570 нм). Пролин и гидроксипролин, у к-рых нет а-аминогруппы, в р-ции с нингидрином образуют производное желтого цвета 440 нм). И. р. неспецифична, т. к. окрашенный продукт с нингидршюм дают также NH3 и др. соед., содержащие аминогруппу (в т. ч. белки и пептиды). Однако р-ции с этими соед. осуществляются без выделения СО2 (Н.р. с выделением СО2 специфична только для а-аминокислот). [c.248]

    Реакцию с нингидрином дают не только а-, но и р- и у-аминокислоты, и т. д. пептиды, белки, амины и аммиак. Пролин дает с нингидрино.м Желтую окраску, которая при продолжительном нагревании переходит в красно-фиолетовую. Реакцию нингидрина с пролином изображают следующей гипотетической схемой  [c.468]

    Существенным моментом при проведении полного гидролиза белков является определение его конца. Обычно конец гидролиза устанавливают по прекращению нарастания аминного азота (определяемого методом ван Сляйка) и выражают его в процентах от количества общего азота. Эта величина не достигает 100%, если белок содержит аминокислоты, в которых азот находится не только в виде а-аминного, например, содержит аргинин, гистидин, пролин и т. д. [c.478]

    Белки коллагеновой группы характеризуются относительно высоким содержанием остатков пролина и оксипролина. Как показали последние исследования, эти остатки вместе с остатками глицина скапливаются на отдельных участках молекулярных цепей. На этих учасшах возникают конфигурации, имеющие много общего с конфигурацией цепи поли-Ь-пролина. [c.543]

    Хар актеризуя в целом особенности вторичной структуры фибриллярных белков, следует подчеркнуть, что для больш инства этих белков характерна а-1Конфигурация полипептидных цепей. Отступление от этой структуры наблюдается у тех белков, у которых обнаруживаются резкие отклонения от закона статистичности в расположении аминокислотных остатков —скопление некоторых видов остатков на отдельных фрагментах молекулярных цепей. В фиброине щелка — скопления остатков глицина, аланина и серина, в коллагене — скопления остатков пролина, оксипролина и глицина. [c.543]

    Преобладание в белках какой-то одной аминокислоты — довольно редкое событие. Коллаген же содерн<ит 337о глицина, 21% приходится на пролин + оксипролии и 11% составляет аланин. Все дело в том, что крупные по размеру боковые группы не могут уместиться внутри тройной спирали. То н<е самое относится и к фиброину шелка, который состоит в основном из периодически повторяющейся последовательности [c.92]

    Одной из нерешенных проблем биологии является механизм Т1ревраш,ения химической энергии в механическую работу. Самыми маленькими движуш,имися органами являются жгутики бактерий, и можно думать, что исследования данного объекта помогут хотя бы отчасти проникнуть в эту тайну. Жгутики прокариот построены из белка одного типа — флагеллина. Молекулы флагеллина совсем не содержат остатков цистеина и триптофана, а остатки фенилаланина,, пролина и гистидина присутствуют в них лишь в небольших количествах. Этот белок характеризуется высоким содержанием гидрофобных аминокислот и имеет один остаток необычной аминокислоты — е- -метиллизина. Субъединицы жгутиков образуют спиральную структуру (рис. 4-7), формируя в ней также 11 почти параллельных оси опирали рядов— надспиралей с шагом 2,3 мкм Д. Эта последняя особенность жгутиков очень важна для понимания механизма их-функционирования. Мутантные бактерии, жгутики которых имеют линейную структуру, неподвижны. [c.281]

    Растворимая ферментная система, ответственная за синтез этого антибиотика, состоит из крупного белка с мол. весом 280 000, который активирует аминокислоты в виде аминоациладенилатов и переносит их на тиоловые группы молекул 4 -фосфопантетеина, ковалентно связанные с ферментом [26, 27]. Таким образом, обеспечивается связывание четырех аминокислот, а именно пролина, валина, орнитина (орнитин см. на рис. 14-2) и лейцина. Активацию фенилаланина обеспечивает другой фермент (мол. вес. 100 000). Формирование полимера инициируется, вероятно, активированным фенилаланином ) и осуществляется аналогично тому, как это имеет место в процессе удлинения цепи жирных кислот (разд. Г,6). Инициация происходит в то время, когда аминогруппа активированного фенилаланина (на втором ферменте) атакует ацильную группу аминоацилтиоэфира, при помощи которой удерживается активированный пролин. Затем свободная иминогруппа пролина атакует активированный валин и т. д., в результате чего образуется пентапептид. После этого две молекулы пентапептида связываются друг с другом, и процесс образования антибиотика завершается замыканием цикла. Последовательность аминокислот в антибиотике строго специфична, и замечательным является тот факт, что эта сравнительно небольшая ферментная система оказывается способной осуществлять все стадии процесса в требуемой последовательности. Аналогичным путем синтезируются также и некоторые другие пептидные антибиотики — тироциди-ны и полимиксины. [c.491]


Смотреть страницы где упоминается термин Пролин в белках: [c.986]    [c.986]    [c.276]    [c.30]    [c.27]    [c.385]    [c.986]    [c.19]    [c.645]    [c.654]    [c.669]    [c.13]    [c.139]    [c.475]    [c.480]    [c.516]    [c.149]    [c.194]    [c.97]    [c.142]    [c.288]    [c.467]    [c.511]    [c.17]   
Основы биохимии Т 1,2,3 (1985) -- [ c.171 , c.172 , c.177 , c.178 , c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Пролин



© 2025 chem21.info Реклама на сайте