Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки пространственная конфигурация

    Пространственная конфигурация белковой молекулы, напоминающая спираль, образуется благодаря многочисленным водородным связям между группами —СО— и —ЫН— (рис. 2). Такая структура белка называется вторичной. [c.19]

    Третичная структура белка—пространственная конфигурация спирали. [c.650]

    Белки. Белки состоят из аминокислот, соединенных в определенной последовательности пептидными связями в полипептидные цепи. Эти цепи имеют совершенно определенную пространственную конфигурацию (конформацию), которая стабилизируется дополнительными связями-ковалентными и нековалентными (рис. 2.18). В зависимости от ро- [c.42]


    Поведение белков в среде определяется некоторыми факторами, зависящими от самого белка. Их полиэлектролитный характер обусловлен аминокислотным составом, особенно составом кислых или основных аминокислот, а также числом и расположением гидрофильных (полярных или ионизируемых) и гидрофобных (неполярных) участков. Влияние оказывают также различные характеристики ионных сил, описанные выше, которые стабилизируют или не стабилизируют пространственную конфигурацию белка и характер ассоциированных небелковых групп. [c.415]

    Третичная структура белка — пространственная конфигурация спирали. [c.705]

    Вторичная структура белка — пространственная конфигурация полипептидной цепи, формируемая в результате нековалентных взаимодействий между функциональными группами аминокислотных остатков (а- и Р-структуры белков). [c.549]

    Белки в природе представлены очень большим разнообразием структур в зависимости от организации молекулярных цепей на четырех уровнях. Линейная последовательность аминокислот, составляющая полипептидную цепь, образует первичную структуру. Аминокислотный состав, число и последовательность аминокислот, а также молекулярная масса цепи характеризуют эту первичную структуру и обусловливают не только другие степени организации, но физико-химические свойства белка. Образование водородных связей между кислородом карбонильной группы и водородом МН-группы в различных пептидных связях предопределяет вторичную структуру. Установление этих внутри- или межмолекулярных водородных связей приводит к возникновению трех типов вторичной структуры а-спираль, Р-структура в виде складчатого листка или тройная спираль типа коллагена. В зависимости от характера белков в основном образуются вторичные структуры одного или другого вида. Однако некоторые белки могут переходить из одной структуры в другую в зависимости от условий, в которых они оказываются, либо образовывать смесь частей в виде упорядоченных а- и Р-структур и неорганизованных частей, называемых статистическими клубками. Между боковыми цепями аминокислот, составляющими полипептидную цепь, устанавливаются взаимодействия ковалентного характера (дисульфидные связи) или нековалентные (водородные связи, электростатические или гидрофобные взаимодействия). Они придают белковым молекулам трехмерную организацию, называемую третичной структурой. Наконец, высшая степень организации может быть достигнута нековалентным связыванием нескольких полипептидных цепей, что приводит к образованию структуры, называемой четвертичной. Многие белки имеют пространственную конфигурацию сферического типа и называются глобулярными. В противоположность этому некоторые белки обладают продольно-ориентированной структурой и называются фибриллярными. Натуральные волокнистые [c.531]


    Пространственная конфигурация полипептидной цепи, точнее тип полипептидной спирали, определяет вторичную структуру белка. Она представлена в основном а-спиралью, которая фиксирована водородными связями (стр. 45). [c.46]

    Все белки являются полипептидами, однако не каждый полипептид является белком. В настоящее время принято считать, что белками являются только такие полипептиды, для которых характерны определенная, свойственная данному белку последовательность чередования аминокислотных остатков (первичная структура белка) и специфическая пространственная конфигурация полипептидной цепочки (вторичная структура белка). Эти две важнейшие характеристики белковой молекулы обусловливают биологическую роль данного белка в живом организме. Считается, что в определенных условиях (pH среды, концентрация попов и т. д.) вторичная структура белка однозначно определяется его первичной структурой. [c.436]

    В соответствии с пространственной конфигурацией молекулы белков их принято разделять на фибриллярные, в которых молекулы вытянуты в виде волокна, и глобулярные, в которых молекулы представляют сферические образования [c.435]

    Кроме ряда научных данных, используемых в теории строения вещества, рентгеноструктурный анализ органических кристаллов оказывает помощь органической химии при установлении строения отдельных соединений. Так, например, по данным, полученным этим методом, из нескольких возможных химических формул пенициллина была выбрана одна. Рентгеновский анализ был применен для исследования строения многих десятков стероидов при этом выяснилось, что некоторым стероидам приписывались неправильные пространственные конфигурации. При помощи этого метода была полностью расшифрована структура такого сложного вещества, как фталоцианин. Рентгеновский метод позволяет надежно определять молекулярные веса белков для этого необходимы хорошо образованные кристаллы белков, дающие возможность получать хорошие снимки. [c.742]

    Пространственная конфигурация белков и их роль в химии организма. [c.8]

    Природные белковые тела наделены определенной, строго заданной пространственной конфигурацией и обладают рядом характерных физико-хими-ческих и биологических свойств при физиологических значениях температуры и pH среды. Под влиянием различных физических и химических факторов белки подвергаются свертыванию и выпадают в осадок, теряя нативные свойства. Таким образом, под денатурацией следует понимать нарушение общего плана уникальной структуры нативной молекулы белка, преимущественно ее третичной структуры, приводящее к потере характерных для нее свойств (растворимость, электрофоретическая подвижность, биологическая активность и т.д.). Большинство белков денатурирует при нагревании их растворов выше 50—60°С. [c.47]

    Чрезвычайно поразительным является тот факт, что лишь один из двух возможных оптических изомеров каждой из двадцати четырех аминокислот обнаружен в животных и растительных белках и что такой изомер имеет одну и ту же пространственную конфигурацию для всех аминокислот природных белков т. е. во всех случаях атом водорода, карбоксильная группа [c.485]

    Макромолекулярный этап, во время которого были изучены детально механизм реакции и пространственная конфигурация тех макромолекулярных систем, которые участвуют в биосинтезе белка. [c.265]

    Как только формирование полипептидной цепи закончено, она снимается с рибосомы в окружающую среду, принимая характерную пространственную конфигурацию, типичную для данного специфического белка. Рибосомная РНК участвует в этом процессе, по-видимому, по стехиометри-ческому а не по каталитическому типу. [c.346]

    Все получаемые из белков аминокислоты — за исключением глицина — оптически активны, так как они содержат (в а-положении) асимметрический атом углерода. Абсолютную конфигурацию аминокислот принято обозначать исходя из абсолютной конфигурации L-глицеринового альдегида. Все аминокислоты, получаемые из белков в условиях, исключающих рацемизацию, принадлежат к L-ряду. Ниже представлены пространственные конфигурации L-глицеринового альдегида и L-аланина. [c.45]

    Даже если предположить, что белковая молекула представляет собой длинное, нитевидное образование (пространственная конфигурация которого может принимать самую причудливую форму), трудно себе представить какую-либо упорядоченность в белковой системе. Однако фотография кристаллического растительного белка, полученная с помощью электронного микроскопа (фиг. 81), дает основание полагать, что по крайней мере некоторые, а вероятно большинство белков, могут каким-то образом существовать в совершенно определенных конформациях, или формах. Именно вторичная структура белка дает возможность образовывать такие уникальные формы белковой молекулы. [c.314]

    Таким образом, в фермент-субстратном комплексе происходит пространственная деформация и возникает напряжение определенных валентных связей как в молекуле субстрата, так и в активном центре белка изменяются распределения электронных плотностей и, соответственно, происходит поляризация некоторых связей. Эти эффекты возникают именно по причине неполного стерического соответствия между контактирующими группами активного центра и молекулы субстрата помогают этому внешние воздействия, влияющие на комплекс совместно (кооперативно). Деформация и поляризация основных ковалентных связей приводит к тому, что барьер активации в переходном состоянии преодолевается гораздо легче. Наличие разнообразных флуктуаций в электронной и пространственной конфигурациях ферментного белка увеличивает вероятность формирования активированного комплекса, а это соответствует возрастанию абсолютной скорости происходящей реакции. [c.81]


    С—N—. Они образуют полипептидные цепи и циклы, которые в свою очередь тоже соединяются между собой, образуя определенную пространственную конфигурацию и упаковку молекулы белка. [c.5]

    Все белки являются полипептидами, однако не каждый полипептид является белком. В настоящее время принято считать, что белками являются только такие полипептиды, для которых характерны определенная, свойственная данному белку последовательность чередования аминокислотных остатков (первичная структура белка) и специфическая пространственная конфигурация полипептидной цепочки (вторичная структу- [c.364]

    Все эти связи в общем довольно слабы, но их совместное действие приводит к стабилизации очень сложной пространственной конфигурации белка. Эти особенности структуры белка обуславливают химический прихотливый рельеф поверхности его гигантской молекулы. Группы атомов, находящиеся на большом расстоянии в полипептидной цепи, оказываются сближенными. Возникающие при этом комбинации аминокислотных остатков в большем числе случаев действуют как каталитически активные центры. Явление это настолько распространено, что некоторые биохимики вообще всякий белок считают каталитически активным. [c.162]

    Вследствие крайней сложности белкового набора, синтезируемого клетками млекопитающих, изучение всей проблемы на молекулярном уровне требует много времени и часто приводит к неоднозначным результатам. Практически очень интересной кажется область иммунологических исследований изучается реакция многоклеточных систем на введение чужеродных тел-антигенов. Антигены — это, как правило, макромолекулы-белки или полисахариды попадая в организм, они вызывают образование особых плазматических клеток, синтезирующих антитела. Антитела, покинув клетку, вступают в контакт с антигеном. Антитела имеют в молекуле две точки одна специфична и в отношении химической природы, и в отношении пространственной конфигурации, а другая сходна у различных антител. Антитела соединяются с антигеном, и продукт реакции выводится из организма особыми клетками, поглощающими весь возникший комплекс антиген — антитело. Вероятно, появление антигена стимулирует образование плазматических клеток из каких-то предшественников и затем вызывает синтез специфической м-РНК, на которой и получается белок, рассчитанный на захват данного антигена. [c.214]

    Таким вот образом предопределяются и формируются хотя и негомогенные , но тем не менее упорядоченные конфигурации поверхностей, и можно легко понять, что эти конфигурации играют решающую роль при взаимодействии белков с их химическими партнерами этим последним также свойственна та или иная пространственная конфигурация, так что они могут совмещаться только с таким белком, который имеет соответствующую форму поверхности, и [c.36]

    Хотя мы еще не в состоянии достаточно удовлетворительно объяснить механизм действия различных ионов на сократимые белки мышечного волокна, тем не менее нет никакого сомнения в том, что пространственная конфигурация мышечного волокна тесно связана с наличием на его поверхности электрического заряда. Это подтверждается и тем, что pH мышцы повышается при ее пассивном растяжении [137, 138]. [c.192]

    Желатина, которую получают при нагревании коллагена, не обладает антигенными свойствами. Этот факт первоначально пытались объяснить отсутствием в этом белке тирозина. Однако желатина не приобретает антигенных свойств и после присоединения к ней тирозина [17], диазосоединений [18] или иода [19]. В настоящее время отсутствие антигенных свойств у желатины приписывают нескольким причинам 1) желатина представляет собой денатурированный в результате нагревания белок и вследствие этого не обладает определенной внутренней структурой [20] 2) при введении в организм она не отлагается в местах образования антител, но быстро выводится из организма [18, 19] 3) желатина содержит большое количество глицина. Поскольку глицин не содержит в а-положении боковых цепей, пептидные цепи, в состав которых входит глицин, могут свободно вращаться вокруг своей длинной оси, что влечет за собой нарушение их пространственной конфигурации [21]. В связи с этим пептидные цепи желатины не обладают жесткой структурой, которая является одним из необходимых условий иммунологической специфичности белков. [c.333]

    Электронная структура полимеров определяется характером существующей химической связи между атомами элементарного звена и между отдельными участками макромолекулы. Например, в молекуле белка кератине, являющегося основой строения натурального волокна — шерсти, существуют ковалентные полярные связи с высокой долей делокализации электронной плотности между атомами пептидной группировки -НЯС-СО-КН-, составляющей скелет макромолекулы. Кроме этого, внутри макромолекулы и между макромолекулами существуют другие виды химической связи, также определяющие пространственную конфигурацию (конформацию) макромолекулы водородные связи, вандерваальсовы и другие виды взаимодействий. Но электронн-ная структрура полимеров не всегда может быть представлена как сумма электронных структур отдельных его участков. Вследствие большого числа атомов, участвующих во взаимодействии, для полимеров, так же, как и для твердых тел, но при гораздо большем числе влияющих факторов, могут быть рассчитаны валентная зона и зона проводимости. По величине расщепления — разности энергий между ближайшими границами этих зон, могут быть выделены полимеры — изоляторы, полимеры — полупроводники и полимеры — проводники электрического тока. Для полимеров с бесконечными цепями атомов, обеспечивающих делокализацию электронов по всей макромолекуле, предсказывают и сверхпроводящие свойства. [c.613]

    Еще во времена Пастера было известно, что белки обладают оптической активностью. В дальнейшем было выяснено, что это обуславливается оптической активностью входящих в состав белков аминокислот. По мере развития конфигуративных исследований выяснилось, что находимые в белках аминокислоты имеют одинаковую пространственную конфигурацию, принадлежат к -ряду. Известно лишь очень небольшое число исключений, сам характер которых лишь сильнее подчеркивает правило. Неестественные пространственные изомеры аминокислот найдены в составе некоторых антибиотиков, в бактериях. [c.635]

    Белки характеризуются поэтому структурной и оптической изомерией и, кроме того, пространсгвенной конфигурацией молекулы, возникающей в результате определенного складывания пептидных цепей. Такая пространственная конфигурация молекул получила название конформации. Вероятно, конформацией молекулы объясняется еще одна особенность белков —их повышенная лабильность (неустойчивость), легкость превращения глобулярных белков в фибриллярные, легкость денатурации, выражающаяся в потере белком способности растворяться. [c.434]

    К изучению структуры белка можно подходить с различных точек зрения. Можно исследовать последовательность чередования аминокислотных остатков в полипептидной цепи, изучать характер функциональных групп белка, особенности связей между боковыми лрутпами остатков, пытаться установить наличие или отсутствие определенных групп в белке. Такою рода исследования, связанные с изучением особенностей химического строения различных белков, были приведены выше. Не менее важную роль в изучении структуры белков играют исследования пространственной конфигурации белковых молекул. Определенная пространственная Конфигурация белковой молекулы обеспечивает возможность ироявления ею определенных свойств, которые и составляют основу биологической специфичности белков. Нарушения конфигурации, происходящие, например, при денатурации, вызывают потерю активности белка, т е. потерю этих свойств. [c.535]

    В данном разделе специфичность протеолитических ферментов рассматривается применительно к селективному расщеплению полипептидов и белков с известным порядком расположения аминокислот. Следует, однако, иметь в виду, что порядок расположения аминокислотных остатков в цепи не определяет полностью пространственные взаимодействия. При свертывании цепи и появлении, например, структуры а-спи-рали боковые цепи последовательно расположенных аминокислотных остатков выступают из спирали через определенные промежутки и повернуты друг к другу на угол, ра-вный примерно 100° по отношению к оси спирали. Свобода вращения боковых цепей обусловливает значительное разнообразие занимаемых ими положений они могут быть удалены от другой- боковой цепи или пептидной связи, расположенных на расстоянии нескольких аминокислотных остатков в главной цепи, на такое же расстояние, как и от своего аминокислотного остатка или пептидной связи. Кроме того, возможно взаимодействие между боковыми цепями и пептидными связями, расположенными рядом геометрически, но принадлежащими к значительно удаленным друг от друга в цепи аминокислотным остаткам или даже к другой полипептидной цепи молекул. Таким образом, знание пространственной конфигурации может оказаться столь же важным при решении рассматриваемого вопроса, как и знание последовательности расположения аминокислот. [c.179]

    Аминокислоты, входящие в состав белков, принадлежат к ряду а-аминокислот. Все они, за исключением оптически недеятельного глицина, имеют асимметрическое строение При этом, независимо от различного направления вращения в их растворах все белковые аминокислоты относятся по конфигурации а-С-атома к -ряду, т. е. конфигурация их а-С-атома соответствует пространственной конфигурации -молочной кислоты или пятого С-атома -глюкозы. Такие аминокислоты как цистин, изолейцин, треонин и оксипролия имеют два асимметрических С-атома и могут существовать в виде четырех стереоизомерных [c.146]

    Белки бесконечно разнообразны по химическому строению, пространственной конфигурации и обязанностям , которые они выполняют в живой клетке. К пониманию этого исследователи пришли долгим и сложным путем в середине прошлого века, например, господствовала курьезная теория, в соответствии с которой любой белок представляет собой комбинацию одного и того же кирпичика — протеина — с атомами серы или фосфора. По-чему-то считалось, что протеин — это С4оНб2Ыю012. Ныне от этой теории осталось только название протеины , иногда применяемое к белкам. Для сортировки по молекулярной массе белковых недотрог, теряюших свои важнейшие свойства даже при самых нежных химических или тепловых воздействиях, применяется принцип, с помощью которого можно и отжимать белье после стирки и разделять изотопы. [c.112]

    Детальный механизм, предложенный здесь, дает возможный ответ на вопросы, поднятые в начале этого раздела. Почему макромолекулы белка могут сами по себе действовать как ферменты Почему они так специфичны в выборе вещества, на которое они действуют Согласно описанному механизму, можно предположить, что участок фермента должен обладать весьма жесткой пространственной конформацией. Жесткая структура, следовательно, необходима как каркас, на котором расположены различные части активного участка. Из всех макромолекул, с которыми мы встречались в этой книге, одни белки способны выполнять такую роль. Их специфичность тоже объясняется строго определенными размерами активного участка. Пространственная конфигурация активного центра, точно заданная для реакций с ионами фумаровой или (—)-яблочной кислоты, очевидно, не подойдет для других молекул, которые могут напоминать ионы фумаровой кислоты или (—)-яблочной кислоты химически, но будут отличаться от них пространственной структурой. [c.738]

    Наконец, следует остановиться на предположении, высказанном рядом исследователей относительно того, что биологическая активность антибиотиков — полипептидов, а также и некоторых других антибиотиков каким-то образом связана с наличием в их молекулах составных частей, имеющих пространственную конфигурацию, противоположную той, которая обычно встречается в веществах природного происхождения. Действительно, в настоящее время известно, что в состав пенициллинов входит -диметилцистеин, тогда как в белках найден только /-цистеин. Извгстно также, что оба моносахарида, в одящие в состав молекулы стрептомицина (N-мегилглю-козамин и стрептоза), принадлежат к /-ряду, тогда как встречающиеся в природе моносахариды обычно относятся к rf-ряду. В этой главе уже подчеркивалось, что в состав трех важнейших антибиотиков — полипептидов (грамицидина С, тироцидина и грамицидина) входят некоторые rf-аминокислоты, тогда как обычно в природных продуктах встречаются /-аминокислоты. Интересно отметить, что в состав антибиотика совершенно другою типа — глиотоксина входит остаток i/ аланина. [c.196]

    Между карбонильными и имидными группами пептидной цепи возникают водородные связи >С = О...Н — N<, что и приводит к пространственной конформации, т. е. к образованию вторичной структуры белка. Основной конфигурацией является а-спираль, в которой водородные связи соединяют NH-rpynny одной пептидной связи с СО-группой другой связи, находящейся от первой связи на один виток спирали. [c.13]

    При анализе ряда глобулярных белков было установлено, что они имеют в растворе весьма компактные формы, размеры которых не сравнимы по величине с размерами, ожидаемыми для стержнеобразных а-спиралей сходного молекулярного веса. Гидродинамические данные и результаты светорассеяния указывают также, что пространственная конфигурация у белков этого класса более компактна, чем у беспорядочных клубков. Чтобы объяснить это кажущееся несоответствие, необходимо допустить, что молекулы глобулярных белков представляют собой сверхклубки , состоящие из коротких спиральных сегментов, разделяемых неспиральными зонами. Последние наделяют полипептидные цепи достаточной гибкостью, чтобы они могли свернуться в компактную глобулу, которая стабилизируется различного рода вторичными связями. Следовательно, в молекуле белка мы имеем как спиральные, так и аморфные участки. Что же касается синтетичесАх полипептидов, то здесь, как уже говорилось, конформация полипептидной цепи зависит от природы растворителя в одних вторичная структура этих соединений представлена спиральной формой, в других— беспорядочным клубком. Каким образом можно различить эти два типа вторичной структуры  [c.101]

    Из имеющейся информации о природных белках очевидно, что структурными формами (а- и р-структурами), описанными в предыдущих разделах, нельзя охарактеризовать все аспекты их молекулярной организации. Спиральные участки для большинства белков являются лишь частью их макромолекулы и в большинстве случаев могут объяснить только малую долю ее конформации. Вместе с тем макромолекулы белка имеют ясно выраженную пространственную конфигурацию, которая не менее строго определена, чем конфигурация высоко спиральных систем. Этот уровень организации белковой молекулы, включающий в себя вторичную структуру полипептидных цепей, как мы уже упоминали, в настоящее время принято называть третичной структурой. Для пояснения напомним, что молекулы глобулярных белков представляют собой сверхклубки , состоящие из спиральных и аморфных сегментов. Последние наделяют полипептидные цепи достаточной гибкостью и позволяют им свернуться в компактную глобулу, которая стабилизируется различного рода связями. Вот эта пространственная упаковка чередующихся спиральных и аморфных участков первичной цепи в компактное и симметричное тело и составляет третичную структуру макромолекулы белка. [c.115]

    Можно сформулировать механизм действия ферментов следующим образом. Два субстрата, один из которых содержит связь А—В, а другой связь С—О, присоединяются к каким-то группам на макромолекуле фермента. При этом атомы АВ и СО оказываются в непосредственной близости друг от друга и в нужной пространственной конфигурации. Роль катализатора в том, что он помогает расслабить связи А—В и С—В в обоих субстратах и тем самым способствует образованию новых ковалентных связей А—С и В—В. Для того чтобы осуществилась химическая реакция, однако, все равно требуется тепловая флюктуация. Процесс, описываемый уравнением АВ- СВ АС ВВ, происходит на расстояниях порядка длины химической связи, т. е. порядка немногих ангстрем. Поэтому казалось непонятным, почему ферментами являются белковые макромолекулы сравните.тьно больших размеров (достигающих мнопгх десятков ангстрем). Было высказано предположение, что на поверхности белковой макромолекулы существует локальный центр ферментативной активности, состоящий из небольшого числа групп, расположенных близко друг от друга. Эти группы могут принадлежать звеньям полипептидной цепи, весьма удаленным друг от друга, но сближенным при закручивании цепи во вторичной и третичной структуре. Поэтому ферментативная активность часто столь чувствительна к денатурации белка. Прямьш доказательством теории активного центра явились опыты, в которых макромолекула фермента расщеплялась на осколки, сохранявшие свою каталитическую активность. [c.141]


Смотреть страницы где упоминается термин Белки пространственная конфигурация: [c.705]    [c.325]    [c.367]    [c.42]    [c.29]    [c.204]    [c.47]    [c.64]    [c.345]    [c.32]   
Химия и биология белков (1953) -- [ c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Пространственная конфигурация белковых молекул

Пространственная конфигурация полипептидных цепей в белках



© 2025 chem21.info Реклама на сайте