Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность инкремент

    Эмпирически найдено [70], что отношение скорости ультразвука в расплавленных или растворенных высокомолекулярных веществах к плотности соответствующего раствора или расплава связано со средним молекулярным весом, с одной стороны, и со степенью разветвленности молекул, т. е. с се структурой, с другой стороны. Эти соображения, как указывает Б. Б. Кудрявцев [16], приводят к заключению, что инкременты молекулярной скорости звука должны корректироваться для случая разветвленных молекул. [c.454]


    Причина, II силу которой температурный коэффициент плотности для всех углеводородов обратно пропорционален молекулярному весу, будет рассмотрена ниже в связи с обсуждением. значения молекулярного инкремента объема. [c.231]

    Данные этой таблицы, типичные для многих соединений [20, 21, 24, 361, показывают, что при расчете при помощи функции Лорентц-Лоренца получаются слишком большие изменения коэффициента преломления для данного инкремента плотности, а функция Гладстона и Дэйла дает слишком малые изменения коэффициента преломления для данного изменения п от-ности. Величина же ошибок для этих двух функций примерно одна и та же, но знаки их различны. Функция Эйкмана довольно точна. [c.258]

    Плотность ароматических углеводородов, имеющих орто- и смежное положение заместителей, выше, чем у других изомеров с теми же алкильными группами. Введение заместителей в ароматическое ядро снижает температуру плавления и повышав ет температуру кипения (инкремент температуры кипения составляет 20°С на один атом углерода). Наличие нескольких заместителей повышает температуру кипения больше, чем изомерный углерод с одним заместителем (ксилолы и этилбензол, триметилбензолы и н-пропил- и изо-пропилбензолы). Для симметричных изомеров характерна более высокая температура плавления (л-ксилол плавится при 13,3°С, м- и о-ксилолы соответственно при —47,9°С и —25,2°С). Подобная же закономерность наблюдается и для трехзамещенных углеводородов. При различии в строении алкильного заместителя наблюдаются закономерности, характерные для парафиновых углеводородов — изоструктура алкильного заместителя приводит к снижению температуры кипения. Основные показатели некоторых ароматических углеводородов приведены в табл. 1.1. [c.9]

    В некоторых случаях малая химическая стойкость соеда-нений делает невозможным точное экспериментальное определение плотности. Приблизительно объем, приходящийся на формульную единицу, может быть вычислен по аддитивной схеме Уд, где , 1 4 Уз объемы, приходящиеся на формульную единицу. Может быть использован и расчет по ионным инкрементам, предложенный Биль-цем. Если не происходит резких изменений координационных чисел, то объем сложных окисных соединений равен сумме объемов исходных окислов, например, [c.79]

    Приближенные расчеты Е, основаны на предположении об аддитивности вкладов в плотность энергии К энергий хим связей, соединяющих атомы (инкрементов) АЕ, Е, = Y,AE, К низкомол в-в связана с их [c.421]


    Дж /м ) 8 =, где -энергия когезии, И-уд. объем. Величину 6 берут из справочника или рассчитывают по методу инкрементов Е , значения к-рых приведены в таблицах. Зная Е , находят 8 = где р-плотность [c.370]

    Соотношение между удельным объемом растворенного вещества (Б) и инкрементом плотности (dp/dw) выражается как [c.186]

    Из уравнения Лоренца — Лоренца можно найти общее выражение для зависимости между удельным инкрементом показателя преломления и инкрементом плотности [c.186]

    Дифференцирование уравнения (11.19) по w дает зависимость между инкрементом плотности и удельным инкрементом показателя [c.186]

    В легком сдвиге электронной плотности под влиянием внешних электрических полей. Мерой такой поляризуемости является инкремент молекулярной рефракции связи (С—С 1,209 С—С 4,151). Электроны л-МО этилена, так сказать, более подвижны, чем электроны а-МО этана. Положения ВЗМО и НСМО имеют большое значение для спектральных и химических свойств соединений. Можно сказать, что химическое поведение этилена определяется прежде всего я-связью. [c.62]

    Инкремент плотности определяется как йр/йгю и связан с йр/йс  [c.186]

    Углеводороды обычно легче воды. В данном гомологическом ряду по мере увеличения молекулярной массы плотность возрастает, однако инкремент, соответствующий увеличению молекулы на одну метиленовую группу, постепенно уменьшается. Изменение плотности в гомологических рядах алканов, 1-алкенов и 1-алкинов показывают кривые I, П и И1 на рис. 3.21. Следует заметить, что плотность ацетиленовых углеводородов превышает плотность соответствующих олефинов, а последние в свою очередь обладают большей плотностью, чем алканы с тем же числом атомов углерода в молекуле. Положение ненасыщенной связи в молекуле также оказывает влияние на плотность вещества. Перемещение двойной связи в среднюю часть молекулы влечет за собой увеличение плотности веществ. Эти изменения иллюстрирует табл. 3.7. [c.75]

    СТИ твердого тела (см. стр. 91), а не по плотности жидкости с помощью уравнения (2.64). Хотя приведенные в табл. 16 значения Ат и велики, они все же меньше тех значений Ат, которые получились бы, если бы молекулы располагались на поверхности плашмя- Предположение о такой ориентации молекул можно сделать потому, что инкремент площади, приходящийся на группу СНг, приблизительно постоянен. [c.97]

    Оценка фазового состояния компонентов в смеси ПЭНД и полиоксиметилена, проведенная на основании измерений плотности системы при 20 °С и теплоемкости в интервале температур 30—130 °С, показала [431], что при малых (до 3%) содержаниях каждого полимера в смеси на термограммах наблюдается лишь эндотермический пик, соответствующий плавлению основного компонента, в то время как при сравнимых количествах (1 1) обоих полимеров отмечаются два пика плавления, температуры которых соответствуют температурам плавления исходных компонентов. Этот результат подтверждает термодинамическую несовместимость ПЭ и ПОМ. На рис. V. 15 приведены графики зависимости плотности и теплот плавления в расчете на чистый компонент в зависимости от состава смеси. Из приведенного рисунка видно, что указанные зависимости немонотонны. В области малых (0,5—3%) содержаний ПОМ плотность смеси существенно превышает значение, соответствующее правилу аддитивности теплота плавления ПЭ (т. е. степень кристалличности) также превышает соответствующее значение для исходного образца. Принимая во внимание, что температура максимальной скорости кристаллизации ПОМ лежит выше температуры плавления ПЭ (по нашим данным, около 150°С), положительный инкремент плотности смесей в указанном диапазоне концентраций ПОМ можно объяснить возрастанием степени кристалличности ПЭ в результате зародышеобразующего действия дисперсных частичек ПОМ. При дальнейшем увеличении содержания ПОМ плотность смесей оказывается меньшей аддитивного значения, вплоть до содержания ПОМ 99,5%- Этот результат можно было бы объяснить резким уменьшением степени кристалличности ПОМ, кристаллизация которого протекает в присутствии расплавленного ПЭ, однако значения плотности, рассчитанные, исходя из экспериментально измеренных значений степени кристалличности и табулированных значений плотности обоих компонентов, в диапазоне концентраций ПОМ 97—99,5% оказались меньшими экспериментальных. Отсюда следует, что дефект плотности [c.219]

    Сравнительно небольшую группу образуют методы вычисления, основанные на принципе аддитивности. Эти методы рекомендованы, в частности, для расчета ряда свойств органических соединений. Наряду с уравнениями, в которых рассматриваемое свойство определяется путем суммирования слагаемых, каждое из которых приписывается атому или группе атомов, в последнее время рекомендованы методы, в которых численные значения этих инкрементов зависят не только от природы частей молекулы, но и от их структуры. Это позволяет получить более точные результаты. К числу таких методов относится метод расчета, разработанный В. М. Татевским [5]. Он основан на учете природы данного тина связи атомов в молекуле соединения и влияния па него атомов, непосредственно связанных с данными атомами (подтип связи). Каждому типу и подтипу связи приписывается определенный вклад в значение рассматриваемого свойства С (он определяется из экспериментальных данных) и расчет величины С сводится к суммированию этих вкладов. Применение этого метода позволило Татевскому и его сотрудникам найти ряд свойств парафиновых углеводородов (мольный объем и плотность, рефракцию, теплоты испарения, образования и сгорания, изобарный потенциал образования, точки кипения, давления пара, магнитную восприимчивость). Указанный метод в настоящее время распространяют и на другие классы органических соединений, для которых удалось найти значения отдельных свойств по мере накопления надежных опытных данных методом Татевского удастся охватить новые классы веществ. [c.8]


    Если экстраполировать эти данные для парафинов очень высокого молекулярного веса, то сумма инкрементов, соответствующих СН,-груп-пам, становится настолько больше постоянной в уравнении (9) или (9а), что этой постоянной можно пренебречь. Это приводит к представлению о предельной плотности , которая выражается, как частное от деления 14,026 на предельное значение инкремента объема, соответствующего СНа-группе. Как подсчитал Смиттенберг [80], предельная плотность равна 0,8513, что соответствует предельному значению инкремента объема для СНа-группы, равному 16,38. [c.232]

    Плотность полициклических нафтенон с одним и тем же числом углеродных атомов н молекуле почти не зависит от того, являются ли кольца конденсированными или нет. Это следует из уравнения (14), так как инкремент, приходящийся на одну GHj-rpynny в цепи, на 3,13 мл/моль больше, чем инкремент, приходящийся на углеродный атом в кольце, а инкремент, соответствующий общей связи колец, на 3,45 мл1моль меньше инкремента для углеродного атома в цепи. Это иллюстрируется табл. 7, в которой приведены вычисленные значения молярных объемов для ряда нафтенов с эмпирической формулой j4H2g. [c.238]

    Одним 113 основных параметров оценки межмолекулярного взаимодействия компонентов нефти, удобных для практических целей, является плотность энергии когезии, численно равная от-нощению энтальпии испарения жидкого компонента к его мольному объему [36]. Необходимые данные об энтальпиях испарения для расчета плотности энергии когезии и соответственно параметра растворимости жидких компонентов можно определить либо из непосредственных калориметрических данных, либо по температурной зависимости давления насыщенного пара, описываемой известным уравнением Клаузиуса — Клапейрона, либо по эмпирическим формулам через температуру кипения компонента. Однако энтальпию испарения экспериментально можно определить липль для углеводородов, испаряющихся без разложения. Для тех соединений, температура деструкции которых ниже температуры кипения, приемлемы методы расчета параметра растворимости на основе инкрементов плотности когезии отдельных групп атомов (ЛЯ ) [37]  [c.20]

    Молекулярная рефракция органического вещества — величина аддитивная это значит, что ее можно вычислить также теоретически по структурной формуле вещества как сумму атомных рефракций и инкрементов связей. Так, для углерода атомная рефракция равна для Л-линии натрия (589 нм) 2,418, для водорода — 1,100, для кислорода в гидроксильной группе — 1,525, для хлора — 5,967 и т. д. Инкременты для кратных связей равны для двойной С= С-связп — 1,733, для тройной — 2,389 и т.д. Совпадение рефракции, вычисленной из экспериментальных данных и найденной теоретически, служит подтвержден и ем структуры вещества. Предположим, например, что были измерены показатель преломления (п а 1,4262) и относительная плотность (р " 0,7785) некоторой жидкости, имеющей молекулярную формулу СвН]2 (молекулярную массу 84,16). Из полученных данных по формуле Лорентц— Лоренца (где М — молекулярная масса, р — плотность, п — показатель преломления) была найдена молекулярная рефракция 27,71. [c.356]

    Эквивалентные руктурные нсоставляющие(Э.С.С.) молекул углеводородов и значения их инкрементов Л(р цлл расчетов стандартной температуры кипения и отосительной плотности [c.50]

    Определив инкременты объемов Д F, всех атомов, входящих в повторяющееся звено полимеров, можно рассчитать относительную долю занятого объема в общем объеме полимерного тела. В случае полимеров расчеты удобно вести исходя из молярных объемов повторяющегося звена, поскольку полимеры всегда полидисперсны (т.е. содержат макромолекулы различной длины), а также потому, что при большой длине макромолекулы влиянием концевых групп можно пренебречь. Тогда собственный молярный объем будет равен Ксобств = 2] А 3 общий молярный обьем Кобщ = М/р, где р - плотность i [c.32]

    При изучении седиментационного равновесия олучают информацию о а) средневесовом молекулярном весе (М ) и 2-среднем молекулярном весе (Мг) (в том случае, когда инкременты плотности и показателя преломления равны для всех полимерны)  [c.119]

    С помощью простых эмпирических уравнений, базирующихся на огромном экспериментальном материале, можно рассчитать химический сдвиг данного протона. Три такйх уравнения, а также таблицы инкрементов, учитывающих положения алифатических, ароматических и олефиновых протонов, приведены в приложении 4.16.1. На практике, однако, часто нет необходимости прибегать к этим таблицам, поскольку резонансные сигналы протонов разных типов находятся в различных, строго определенных диапазонах спектра (см. рис. 4.43). В общем случае положение сигнала протона зависит от электронной плотности на окружающих его атомах, которая в свою очередь определяется главным образом индукхщонным и резонансным эффектами, передаваемыми через химические связи, и анизотропным эффектом, проявляющимся во взаимодействии непосредственно не связанных атомов (взаимодействие через пространство ). [c.81]

    В общем, введение фтора в циклобутановое кольцо понижает показатель преломления и повышает плотность соединения. Для сравнения с наблюденной молекулярной рефракцией рефракция была вычислена с помощью уравнения Лорентц — Лоренца. Атомная рефракция фтора была определена путем вычитания суммы обычно употребляемых значений всех других инкрементов из величины,определен-ной экспериментально, и деления полученной разности на число атомов фтора.Атомная рефракция фтора в этих соединениях менялась от 1,04 до 1,64 и в среднем равнялась 1,16 [6]. Тетрафторциклобутаны, представленные в табл. 1, молекулы которых состоят только из углерода, водорода и фтора, имеют АРр в среднем равную 1,08, которая соответствует величине, описанной для фторуглеводородов, содержащих в молекуле четыре атома фтора [7 ]. [c.315]

    Гроссе и Уаккер [22а] определяли содержание ароматических углеводородов с помощью удельно дисперсии (разность между показаниями рефракции для и Я з, деленная на плотность). Удельная дисперсия б, умноженная на фактор 10 ООО, равняется 99 1 для всех парафинов и нафтенов, кипящих в пределах бензинов значительно выше удельная дисперсия для моноолефинов (около 115) и очень высокая для ароматики (от 171 до 191). Диолефины имеют очень высокое значение удельной дисперсии и, если они присутствуют в значительных количествах, они удаляются с помощью малеинового ангидрида. Процентное содержание олефинов определяется, например, по методу бромных чисел и инкремент дисперсии для олефинов принимается равным 0,16 бромного числа. Процентное содержание ароматических углеводородов определяется по формуле  [c.301]

    В целом ряде случаев записимость частоты плазмепиых колебаний значительно мепее существенна, чем соответствующая зависимость инкремента. Такое положение обусловлено тем, что частоты плазменных колебаний определяются сравнительно медленно изменяющимися параметрами, определяющими распределения частиц, Так, в случае электронных ленгмюровских и в случае ионнозвуковых колебаний частоты плазменных ко.леблпий являются плавными функциями плотности числа частиц и их температуры. Напротив, инкременты (так же как и декременты) колебаний часто определяются малыми группами резонансных частиц, перераспределение которых, возникающее в результате взаимодействия с [c.259]

    Понятие парахор , предложенное в работе [167], представляет собой важную характеристику молекулярного строения вещества. Для органических жидкостей парахор не зависит от температуры. Имеется много работ, посвященных экспериментальному и теоретическому изучению парахоров различных веществ, предложены новые, более общие зависимости парахора от молекулярных параметров [168—171]. Поскольку эта величина обладает свойством аддитивности, парахоры сложных соединений можно вычислять по парахорам отдельных атомов и связей, вводя поправки на структурные парахоры, значения которых табулированы. Это дает возможность рассчитывать значение у по формуле (11.27). Так, по значениям плотности и поверхностного натяжения жидких полиэфирдиолов, измеренным методом максимального давления в пузырьке, вычисляли парахор [172] и сравнивали это значение с расчетным, определенным по правилу аддитивности из табличных значений. Удовлетворительное совпадение расчетного и экспериментального значений парахора дало основание сделать заключение о возможности производить определение у для полимеров, пользуясь табличными значениями парахоров [98, 171—175]. Действительно, рассчитанные по парахорам значения поверхностных натяжений жидких полимеров иногда хорошо совпадают с экспериментальными [172, 176]. Что касается возможности расчета поверхностной энергии твердых полимеров по формуле (П.27) с использованием табличных значений парахоров, то этот вопрос, по-видимому, не может быть решен однозначно. В ряде случаев [175] значения у полимеров, найденные по формуле (11.27), совпадали со значениями у, полученными другими методами (см. табл. II.2). Однако, например для полиизобутилена, совпаде ние расчетных и экспериментальных значений у име.т1и место только для низкомолекулярных фракций [177]. К тому же следует добавить, что значения у, рассчитанные по формуле (11.27) различными авторами, существенно различаются [174, 175]. Очевидно, методика расчета у по (11.27) с учетом структурных инкрементов циклов и связей далека от совершенства. [c.71]

    Введение плотности d привело к тому, что молекулярная рефракция для определенной длины волны оказалась почти не зависящей от температуры и от аггрегатного состояния. Таким образом, молекулярная рефракция представляет собой свойство, присущее материи, с ясно аддитивным характером, обладающее, однако, также и ясно выраженными конститутивными особенностями. Поэтому можно вычислять молекулярную рефракцию из атомных констант, а появляющиеся при этом отступления объяснить определенными конститутивными особенностями. 2 Так, в известных пределах изомерные соединения имеют одинаковую молекулярную рефракцию увеличение молекулярной рефракции на каждую группу СЩ постоянно при аддитивном расчете молекулярной рефракции следует подставлять определенные инкременты для двойных и тройных углеродных связей, а для атомов кислорода и азота принимать различные значения в зависимости от вида связи. [c.72]

    Диамагнитная восприимчивость, молярная рефракция и молярное магнитное вращение были рассмотрены как примеры аддитивных свойств. Все они в значительной мере зависят от общего объема молекул и могут поэтому быть представлены как суммы вкладов отдельных атомов, хотя обычно приходится вносить конститутивные поправки. Первое свойство, которое использовалось таким образом, было также наиболее очевидным — это сам молекулярный объем. В 1842 г. Копн выбрал в качестве температуры сравнения точку кипения и показал,что тогда молекулярный объем жидкости можно представить в виде суммы инкрементов от отдельных атомов. Например, молярные объемы членов различных гомологических рядов отличаются на 22,0 сл на каждую включаемую д руппу СНд. При наличии кратных связей приходилось делать поправки, так что это был обычный конститутивный элемент свойства. Молярный объем использовали редко, но в 1924 г. Сегден предположил, что измерение молярных объемов при такой температуре, когда все жидкости обладают одинаковым поверхностным натяжением, может служить лучшей основой для сравнения. Он показал, что величину Му / (р — рО можно рассматривать как такой стандартный объем, и назвал ее парахором (у — поверхностное натяжение жидкости р — ее плотность р — плотность пара при какой-либо удобной температуре). Были определены атомные парахоры, а также поправки на различные характерные особенности структуры. В годы между первой и второй мировыми войнами парахор стал довольно моден, и с его помощью можно было сделать интересные заключения. Так, например, измеряемый парахор тримера ацетальдегида—паральдегида совпадал с величиной,. вычисленной для шестичленного кольца из трех атомов углерода и трех атомов кислорода, без двойных связей впоследствии было показано, что паральдегид действительно имеет такую структуру. Од- [c.393]

    С использованием плотностей и коэффициентов преломления была рассчитана молекулярная рефракция эталонных препаратов, значения которой (табл. 4) оказались достаточно близкими теоретической по Фогелю. Однако для алкилбензилсульфидов и гомологов тиофена имеет место заметное расхождение. Рассчитанный инкремент атома сульфидной серы, ко- [c.106]


Смотреть страницы где упоминается термин Плотность инкремент: [c.18]    [c.22]    [c.186]    [c.94]    [c.7]    [c.101]    [c.184]    [c.101]    [c.123]    [c.344]    [c.390]   
Физическая химия Книга 2 (1962) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте